精英家教網 > 高中數學 > 題目詳情
給出問題:F1、F2是雙曲線
x2
16
-
y2
20
=1的焦點,點P在雙曲線上.若點P到焦點F1的距離等于9,求點P到焦點F2的距離.某學生的解答如下:雙曲線的實軸長為8,由||PF1|-|PF2||=8,即|9-|PF2||=8,得|PF2|=1或17.
該學生的解答是否正確?若正確,請將他的解題依據填在下面空格內,若不正確,將正確的結果填在下面空格內______.
雙曲線的實軸長為8,由||PF1|-|PF2||=8,即|9-|PF2||=8,得|PF2|=1或17.
依題意知|F1F2|=12,若|PF2|=1,
由題設|PF1|=9知△PF1F2兩邊之差大于第三邊,與三角形兩邊之差小于第三邊的性質矛盾.
故學生解答不正確.
故答案為|PF2|=17.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

給出問題:F1、F2是雙曲線
x2
16
-
y2
20
=1的焦點,點P在雙曲線上.若點P到焦點F1的距離等于9,求點P到焦點F2的距離.某學生的解答如下:雙曲線的實軸長為8,由||PF1|-|PF2||=8,即|9-|PF2||=8,得|PF2|=1或17.
該學生的解答是否正確?若正確,請將他的解題依據填在下面空格內,若不正確,將正確的結果填在下面空格內
 

查看答案和解析>>

科目:高中數學 來源: 題型:

給出問題:F1、F2是雙曲線-=1的焦點,點P在雙曲線上.若點P到焦點F1的距離等于9,求點P到焦點F2的距離.某學生的解答如下:雙曲線的實軸長為8,由||PF1|-|PF2||=8,即|9-|PF2||=8,得|PF2|=1或17.

該學生的解答是否正確?若正確,請將他的解題依據填在下面橫線上;若不正確,將正確結果填在下面橫線上.

____________________________________.

查看答案和解析>>

科目:高中數學 來源: 題型:

給出問題:F1、F2是雙曲線=1的焦點,點P在雙曲線上若點P到焦點F1的距離等于9,求點P到焦點F2的距離某學生的解答如下:雙曲線的實軸長為8,由||PF1|-|PF2||=8,即|9-|PF2||=8,得|PF2|=1或17

該學生的解答是否正確?若正確,請將他的解題依據填在下面橫線上;若不正確,將正確結果填在下面橫線上

____________

查看答案和解析>>

科目:高中數學 來源:2006年高考第一輪復習數學:8.2 雙曲線(解析版) 題型:解答題

給出問題:F1、F2是雙曲線=1的焦點,點P在雙曲線上.若點P到焦點F1的距離等于9,求點P到焦點F2的距離.某學生的解答如下:雙曲線的實軸長為8,由||PF1|-|PF2||=8,即|9-|PF2||=8,得|PF2|=1或17.
該學生的解答是否正確?若正確,請將他的解題依據填在下面空格內,若不正確,將正確的結果填在下面空格內   

查看答案和解析>>

同步練習冊答案