命題“存在x0∈[-3,6],使f(x0)≤0”的否定是
 
考點(diǎn):命題的否定
專(zhuān)題:簡(jiǎn)易邏輯
分析:利用特稱(chēng)命題的否定是全稱(chēng)命題,寫(xiě)出結(jié)果即可.
解答: 解:因?yàn)樘胤Q(chēng)命題的否定是全稱(chēng)命題,
所以命題“存在x0∈[-3,6],使f(x0)≤0”的否定是:任意x∈[-3,6],使f(x)>0.
故答案為:任意x∈[-3,6],使f(x)>0.
點(diǎn)評(píng):本題考查命題的否定全稱(chēng)命題與特稱(chēng)命題的否定關(guān)系,基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求值:tan10°+tan50°+
3
tan10°tan50°=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合U={1,2,3,4,5,6},集合A={1,2,5},集合B={1,3,4},則(∁UA)∩B=( 。
A、{1}
B、{3,4}
C、{2,5}
D、{1,2,3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a=20.3,b=0.32,c=log20.3,則a,b,c由小到大的順序?yàn)?div id="gphz1kx" class='quizPutTag' contenteditable='true'> 
.(請(qǐng)用“<”連接)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)點(diǎn)A(5,2),且在坐標(biāo)軸上截距互為相反數(shù)的直線l的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)實(shí)數(shù)m>0,n>0,m+n=400,求y=
4
m
+
9
n
的最小值,并指出此時(shí)m,n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lg
1-x
1+x
,如果f(1-a)+f(1-a2)>f(0),則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)y=x2+(a+1)2+|x+a-1|(a∈R).
(1)若a為大于2的常數(shù),求函數(shù)y的最小值;
(2)若函數(shù)y的最小值大于3,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C的焦點(diǎn)在x軸上,短軸長(zhǎng)和焦距均為2.
(1)求橢圓C的標(biāo)準(zhǔn)方程及離心率;
(2)設(shè)O為原點(diǎn).若點(diǎn)A在直線y=2上,點(diǎn)B在橢圓C上,且OA⊥OB,求線段AB長(zhǎng)度的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案