已知中,角的對邊分別為,且滿足.
(I)求角的大小;
(Ⅱ)設(shè),求的最小值.

(I);(Ⅱ)當(dāng)時,取得最小值為0.

解析試題分析:(I)利用正弦定理或余弦定理,將已知式化為:,再利用三角函數(shù)相關(guān)公式(兩角和的正弦公式、誘導(dǎo)公式等),結(jié)合三角形內(nèi)角和定理將其化簡,即可求得角的大小;(Ⅱ)由已知及平面向量的數(shù)量積計(jì)算的坐標(biāo)公式,可得的函數(shù)關(guān)系式:.由(I),,從而,只需求函數(shù)的最小值即可.
試題解析:(I)由正弦定理
,                         2分
代入.             4分
.
.       6分
.                         7分
.                                 8分
(Ⅱ),                                10分
,得.                                11分
所以,當(dāng)時,取得最小值為0.                         12分
考點(diǎn):1.利用正弦定理、余弦定理解三角形;2.平面向量的數(shù)量積運(yùn)算;3.三角函數(shù)的最值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)求函數(shù)的最小正周期和對稱軸的方程;
(2)設(shè)的角的對邊分別為,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知向量,,函數(shù)
(1)求的最大值,并求取最大值時的取值集合;
(2)已知 分別為內(nèi)角的對邊,且成等比數(shù)列,角為銳角,且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在海岸線一側(cè)C處有一個美麗的小島,某旅游公司為方便游客,在上設(shè)立了A、B兩個報名點(diǎn),滿足A、B、C中任意兩點(diǎn)間的距離為10千米。公司擬按以下思路運(yùn)作:先將A、B兩處游客分別乘車集中到AB之間的中轉(zhuǎn)點(diǎn)D處(點(diǎn)D異于A、B兩點(diǎn)),然后乘同一艘游輪前往C島。據(jù)統(tǒng)計(jì),每批游客A處需發(fā)車2輛,B處需發(fā)車4輛,每輛汽車每千米耗費(fèi)2元,游輪每千米耗費(fèi)12元。設(shè)∠,每批游客從各自報名點(diǎn)到C島所需運(yùn)輸成本S元。

⑴寫出S關(guān)于的函數(shù)表達(dá)式,并指出的取值范圍;
⑵問中轉(zhuǎn)點(diǎn)D距離A處多遠(yuǎn)時,S最?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

中,已知,又的面積等于6.
(Ⅰ)求的三邊之長;
(Ⅱ)設(shè)(含邊界)內(nèi)一點(diǎn),到三邊的距離分別為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

中,已知,求邊的長及的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某單位有、、三個工作點(diǎn),需要建立一個公共無線網(wǎng)絡(luò)發(fā)射點(diǎn),使得發(fā)射點(diǎn)到三個工作點(diǎn)的距離相等.已知這三個工作點(diǎn)之間的距離分別為,.假定、、四點(diǎn)在同一平面內(nèi).
(Ⅰ)求的大小;
(Ⅱ)求點(diǎn)到直線的距

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知向量,,其中ω>0,函數(shù),若相鄰兩對稱軸間的距離為
(1)求ω的值;
(2)在△ABC中,a、b、c分別是A、B、C所對的邊,,△ABC的面積S=5,b=4,,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知向量,設(shè)函數(shù)+1
(1)若,求的值;
(2)在△ABC中,角A,B,C的對邊分別是,且滿足,求
的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案