在△ABC中,若,a=2,且三角形有解,則A的取值范圍是_______.

答案:略
解析:

解析1:由正弦定理,得

ba,∴BA,∴A為銳角.

要使此三角形有解,則0sinB1,

.∴

解析2:由余弦定理,得

.∵a2,

要使三角形有解,則上述方程到少有一正數(shù)根,設(shè)方程兩根為,,由于,

.∴0A45°.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,若
BC
=
a
CA
=
b
,
AB
=
c
a
b
=
b
c
=
c
a
,則△ABC的形狀是△ABC的( 。
A、銳角三角形
B、直角三角形
C、等腰直角三角形
D、等邊三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,若
BC
=
a
AC
=
b
,
AB
=
c
,且
|b|
=2
3
,
a
•cosA+
c
•cosC=
b
•sinB

(1)斷△ABC的形狀;
(2)求
a
c
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,若(a+b+c)(a+b-c)=3ab,且sinC=2sinAcosB,則△ABC是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,若(a+b+c)(b+c-a)=3bc,且sinA=2sinBcosC,則△ABC的形狀是(  )
A、直角三角形B、等腰直角三角形C、等腰三角形D、等邊三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,若(a+c)(a-c)=b(b+c),則A等于(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案