【題目】在平面直角坐標系 中,過橢圓 右焦點 的直線交橢圓兩點 , 的中點,且 的斜率為 .

(1)求橢圓的標準方程;

(2)設過點 的直線 (不與坐標軸垂直)與橢圓交于 兩點,問:在 軸上是否存在定點 ,使得 為定值?若存在,求出點的坐標;若不存在,請說明理由.

【答案】(1)(2)當點的坐標為 時, 為定值.

【解析】試題分析:

(1)利用題意結合幾何關系可求得 ,所以橢圓 的方程為

(2)設出直線方程,與橢圓方程聯(lián)立,整理可得當點的坐標為 時, 為定值.

試題解析:

解:(1) 設 ,則 ,兩式相減得,

,又 的中點,且 的斜率為 ,所以 ,即 ,所以可以解得 ,即 ,即 ,又因為 ,所以橢圓 的方程為 .

(2) 設直線的方程為 ,代入橢圓 的方程為,得 ,設 ,則 .

,根據(jù)題意,假設軸上存在定點 ,使得 為定值,則有

,要使上式為定值,即與 無關,則應 ,即 ,故當點的坐標為 時, 為定值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的方程為 ,過點的一條直線與拋物線交于兩點,若拋物線在兩點的切線交于點.

(1)求點的軌跡方程;

(2)設直線的斜率存在,取為,取直線的斜率為,請驗證是否為定值?若是,計算出該值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}與{bn},若a1=3且對任意正整數(shù)n滿足an+1﹣an=2,數(shù)列{bn}的前n項和Sn=n2+an
(1)求數(shù)列{an},{bn}的通項公式;
(2)求數(shù)列{ }的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), ,且的最小值為

(1)求的值;

(2)若不等式對任意恒成立,其中是自然對數(shù)的底數(shù),求的取值范圍;

(3)設曲線與曲線交于點,且兩曲線在點處的切線分別為, .試判斷, 軸是否能圍成等腰三角形?若能,確定所圍成的等腰三角形的個數(shù);若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場計劃銷售某種產品,現(xiàn)邀請生產該產品的甲、乙兩個廠家進場試銷 天,兩個廠家提供的返利,方案如下:甲廠家每天固定返利元,且每賣出一件產品廠家再返利元,乙廠家無固定返利,賣出件以內(含件)的產品,每件產品廠家返利元,超出件的部分每件返利元,分別記錄其天內的銷售件數(shù),得到如下頻數(shù)表:

甲廠家銷售件數(shù)頻數(shù)表:

銷售件數(shù)

天數(shù)

乙廠家銷售件數(shù)頻數(shù)表:

銷售件數(shù)

天數(shù)

(1) 現(xiàn)從甲廠家試銷的天中抽取兩天,求一天銷售量大于而另一天銷售量小于的概率;

(2)若將頻率視作概率,回答以下問題:

①記乙廠家的日返利為 (單位:元),求的分布列和數(shù)學期望;

②商場擬在甲、乙兩個廠家中選擇一家長期銷售,如果僅從日返利額的角度考慮,請利用所學的統(tǒng)計學知識為商場作出選擇,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,已知長方體ABCD﹣A1B1C1D1中,AB=BC=2,AA1=4,E是棱CC1上的點,且BE⊥B1C.

(1)求CE的長;
(2)求證:A1C⊥平面BED;
(3)求A1B與平面BDE夾角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)y=sinx的圖象上所有的點向右平行移動 個單位長度,再把所得各點的橫坐標伸長到原來的2倍(縱坐標不變),所得圖象的函數(shù)解析式是(
A.y=sin(2x﹣
B.y=sin(2x﹣
C.y=sin( x﹣
D.y=sin( x﹣

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】證明與化簡.
(1)求證:cotα=tanα+2cot2α;
(2)請利用(1)的結論證明:cotα=tanα+2tan2α+4cot4α;
(3)請你把(2)的結論推到更一般的情形,使之成為推廣后的特例,并加以證明:
(4)化簡:tan5°+2tan10°+4tan20°+8tan50°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設m,n∈N,f(x)=(1+x)m+(1+x)n
(1)當m=n=5時,若 ,求a0+a2+a4的值;
(2)f(x)展開式中x的系數(shù)是9,當m,n變化時,求x2系數(shù)的最小值.

查看答案和解析>>

同步練習冊答案