分析:在一定條件下,“利潤最大”“用料最省”“面積最大”“效率最高”“強度最大”等問題,在生產、生活中經常用到,在數學上這類問題往往歸結為求函數的最值問題.除了常見的求最值的方法外,還可用求導法求函數的最值.但無論采取何種方法都必須在函數的定義域內進行.
解法一 設相同的時間內,生產第x(x∈N*,1≤x≤10)檔次的產品利潤y最大.
依題意,得y=[8+2(x-1)][60-3(x-1)]
=-6x2+108x+378
=-6(x-9)2+864(1≤x≤10),
顯然,當x=9時,ymax=864(元),
即在相同的時間內,生產第9檔次的產品的總利潤最大,最大利潤為864元.
解法二 由上面解法得到y=-6x2+108x+378.
求導數,得y′=-12x+108.
令y′=-12x+108=0,
解得x=9.因為x=9∈[1,10],y只有一個極值點,所以它是最值點,即在相同的時間內,生產第9檔次的產品利潤最大,最大利潤為864元.
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源: 題型:
某產品按質量分為10個檔次,生產第一檔(即最低檔次)的利潤是每件8元,每提高一個檔次,利潤每件增加2元,但在相同的時間內產量減少3件.在相同的時間內,最低檔的產品可生產60件.問在相同的時間內,生產第幾檔次的產品的總利潤最大?有多少元?
查看答案和解析>>
科目:高中數學 來源:2011-2012年山東省高一上學期期中考試數學 題型:解答題
(本小題滿分12分)某產品按質量分為10個檔次,生產第一檔(即最低檔次)的利潤是每件8元,每提高一個檔次,利潤每件增加2元,但每提高一個檔次,在相同的時間內,產量減少3件。如果在規(guī)定的時間內,最低檔次的產品可生產60件
(I)請寫出相同時間內產品的總利潤與檔次之間的函數關系式,并寫出的定義域
(II)在同樣的時間內,生產哪一檔次產品的總利潤最大?并求出最大利潤.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com