年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2008年普通高等學(xué)校招生全國統(tǒng)一考試(上海卷)、數(shù)學(xué) 題型:044
已知z是實系數(shù)方程x2+2bx+c=0的虛根,記它在直角坐標(biāo)平面上的對應(yīng)點(diǎn)為Pz(Rez,Imz).
(1)若(b,c)在直線2x+y=0上,求證:Pz在圓C1:(x-1)2+y2=1上;
(2)給定圓C:(x-m)2+y2=r2(m、r∈R,r>0),則存在唯一的線段s滿足:①若Pz在圓C上,則(b,c)在線段s上;②若(b,c)是線段s上一點(diǎn)(非端點(diǎn)),則Pz在圓C上.寫出線段s的表達(dá)式,并說明理由;
(3)由(2)知線段s與圓C之間確定了一種對應(yīng)關(guān)系,通過這種對應(yīng)關(guān)系的研究,填寫下表(表中s1是(1)中圓C1的對應(yīng)線段).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
若函數(shù)f(x)=x3+x2-2x-2的一個正數(shù)零點(diǎn)附近的函數(shù)值用二分法逐次計算,參考數(shù)據(jù)如表:
f(1)=-2 | f(1.5)=0.625 |
f(1.25)=-0.984 | f(1.375)=-0.260 |
f(1.438)=0.165 | f(1.406 5)=-0.052 |
那么方程x3+x2-2x-2=0的一個近似根(精確到0.1)為 ( )
A.1.2 B.1.3
C.1.4 D.1.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
若函數(shù)f(x)=x3+x2-2x-2的一個正數(shù)零點(diǎn)附近的函數(shù)值用二分法逐次計算,參考數(shù)據(jù)如表:
f(1)=-2 | f(1.5)=0.625 |
f(1.25)=-0.984 | f(1.375)=-0.260 |
f(1.438)=0.165 | f(1.406 5)=-0.052 |
那么方程x3+x2-2x-2=0的一個近似根(精確到0.1)為 ( )
A.1.2 B.1.3
C.1.4 D.1.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)f(x)和g(x)分別由下表給出定義:
x | 1 | 2 | 3 |
f(x) | 2 | ________ | 3 |
x | 1 | 2 | 3 |
g(x) | 3 | ________ | 1 |
若方程f(g(x))=g(f(x))的解恰有2個,請在表中橫線上填上合適的數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆黑龍江虎林高中高二下學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題
某車間為了規(guī)定工時定額,需要確定加工零件所花費(fèi)的時間,為此作了四次試驗,得到的數(shù)據(jù)如下:
零件的個數(shù)x(個) |
2 |
3 |
4 |
5 |
加工的時間y(小時) |
2.5 |
3 |
4 |
4.5 |
(1)在給定的坐標(biāo)系中畫出表中數(shù)據(jù)的散點(diǎn)圖;
(2)求出y關(guān)于x的線性回歸方程,并在坐標(biāo)系中畫出回歸直線;
(3)試預(yù)測加工10個零件需要多少時間?
(注:)
【解析】第一問中利用數(shù)據(jù)描繪出散點(diǎn)圖即可
第二問中,由表中數(shù)據(jù)得=52.5, =3.5,=3.5,=54,∴=0.7,=1.05得到回歸方程。
第三問中,將x=10代入回歸直線方程,得y=0.7×10+1.05=8.05(小時)得到結(jié)論。
(1)散點(diǎn)圖如下圖.
………………4分
(2)由表中數(shù)據(jù)得=52.5, =3.5,=3.5,=54,
∴=…=0.7,=…=1.05.
∴=0.7x+1.05.回歸直線如圖中所示.………………8分
(3)將x=10代入回歸直線方程,得y=0.7×10+1.05=8.05(小時),
∴預(yù)測加工10個零件需要8.05小時
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com