△ABC的頂點(diǎn)B(-2,0),C(2,0),周長(zhǎng)為16,求頂點(diǎn)A的軌跡方程.
考點(diǎn):軌跡方程,橢圓的定義
專題:圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)三角形的周長(zhǎng)為16,得到AB+AC=12>BC為定值,滿足橢圓的定義,即可得到結(jié)論.
解答: 解:∵△ABC的頂點(diǎn)B(-2,0),C(2,0),
∴BC=4,
∵周長(zhǎng)為16,
∴AB+BC+AC=16,
即AB+AC=16-4=12>BC,
∴頂點(diǎn)A的軌跡是以B,C為焦點(diǎn)的橢圓,
其中c=2,2a=12,即a=6,
∴b2=a2-c2=36-4=32,
則對(duì)應(yīng)的橢圓方程為
x2
36
+
y2
32
=1
(其中a≠±6).
點(diǎn)評(píng):本題主要考查軌跡方程的求解,根據(jù)橢圓的定義是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=|lnx|,若函數(shù)g(x)=f(x)-ax在區(qū)間(0,3]上有三個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是(  )
A、(0,
1
e
B、(
ln3
3
,e)
C、(0,
ln3
3
]
D、[
ln3
3
,
1
e

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinα+cosα=-
1
3
,0<α<180°.
(1)求sinαcosα的值;
(2)求sinα-cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓W:
x2
a2
+
y2
b2
=1(a>b>0)的焦距為2,過(guò)右焦點(diǎn)和短軸一個(gè)端點(diǎn)的直線的斜率為-1,O為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓W的方程.
(Ⅱ)設(shè)斜率為k的直線l與W相交于A,B兩點(diǎn),記△AOB面積的最大值為Sk,證明:S1=S2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一條光線從點(diǎn)P(6,4)射出,經(jīng)過(guò)點(diǎn)Q(2,1),又經(jīng)x軸反射,求入射光線和反射光線所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(文)在平面xoy內(nèi),不等式x2+y2≤4確定的平面區(qū)域?yàn)閁,不等式組
x-2y≥0
x+3y≥0
確定的平面區(qū)域?yàn)閂.
(1)定義橫、縱坐標(biāo)均為非負(fù)整數(shù)的點(diǎn)為“非負(fù)整點(diǎn)”.在區(qū)域U中任取2個(gè)“非負(fù)整點(diǎn)”,求這些“非負(fù)整點(diǎn)”中恰好有1個(gè)“非負(fù)整點(diǎn)”落在區(qū)域V中的概率;
(2)在區(qū)域U中任取一個(gè)點(diǎn),求這個(gè)點(diǎn)恰好在區(qū)域V內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一圓的圓心P在直線y=x上,且該圓與直線x+2y-1=0相切,截y軸所得弦長(zhǎng)為2,求此圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3-x-
x

(Ⅰ)判斷
f(x)
x
的單調(diào)性;
(Ⅱ)求函數(shù)y=f(x)的零點(diǎn)的個(gè)數(shù);
(Ⅲ)令g(x)=
ax2+ax
f(x)+
x
+lnx,若函數(shù)y=g(x)在(0,
1
e
)內(nèi)有極值,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
①如果函數(shù)f(x)對(duì)任意的x∈R,都有f(a+x)=f(a-x)(a為一個(gè)常數(shù)),那么函數(shù)f(x)必為偶函數(shù);
②如果函數(shù)f(x)對(duì)任意的x∈R,滿足f(2+x)=-f(x),那么函數(shù)f(x)是周期函數(shù);
③如果函數(shù)f(x)對(duì)任意的x1,x2∈R,且x1≠x2,都有(x1-x2)[f(x1)-f(x2)]<0,那么函數(shù)f(x)在R上是減函數(shù); 
④通過(guò)平移函數(shù)y=lgx的圖象和函數(shù)y=lg
x+3
10
的圖象能重合.
其中真命題的序號(hào)
 

查看答案和解析>>

同步練習(xí)冊(cè)答案