【題目】設(shè)銳角△ABC的三個(gè)內(nèi)角為A,B,C,其中角B的大小為 ,則cosA+sinC的取值范圍為 .
【答案】
【解析】解:設(shè)銳角三角形ABC的三個(gè)內(nèi)角分別為A,B,C, 則A+B+C=π,0<A< ,0<B< ,0<C< ,
∵B= ,∴A+C= ,
∴ <A< , <C< ,
∴cosA+sinC=cos( ﹣C)+sinC=﹣ cosC+ sinC+sinC=﹣ cosC+ sinC,
∵﹣ cosC+ sinC= (sinCcos ﹣cosCsin )= sin(C﹣ ),
又 <C< ,
∴ =sin <sin(C﹣ )<sin = ,
∴ <cosA+sinC< ,
cosA+sinC的取值范圍是 .
所以答案是: .
【考點(diǎn)精析】認(rèn)真審題,首先需要了解兩角和與差的余弦公式(兩角和與差的余弦公式:),還要掌握余弦定理的定義(余弦定理:;;)的相關(guān)知識(shí)才是答題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2x3+bx2+cx,其導(dǎo)函數(shù)y=f′(x)的圖象(如圖所示)經(jīng)過(guò)點(diǎn)(1,0),(2,0). (Ⅰ)求f(x)的解析式;
(Ⅱ)若方程f(x)﹣m=0恰有2個(gè)根,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若將函數(shù)y=cos 2x的圖象向左平移 個(gè)單位長(zhǎng)度,則平移后圖象的對(duì)稱(chēng)軸為( )
A.x= ﹣ (k∈Z)
B.x= + (k∈Z)
C.x= ﹣ (k∈Z)
D.x= + (k∈Z)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,以A為圓心,AD為半徑的圓交AC,AB于M,E.CE的延長(zhǎng)線交⊙A于F,CM=2,AB=4.
(1)求⊙A的半徑;
(2)求CE的長(zhǎng)和△AFC的面積
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x﹣alnx(a∈R)
(1)當(dāng)a=2時(shí),求曲線y=f(x)在點(diǎn)A(1,f(1))處的切線方程;
(2)求函數(shù)f(x)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若存在實(shí)常數(shù)和,使得函數(shù)和對(duì)其定義域上的任意實(shí)數(shù)分別滿足: 和,則稱(chēng)直線為和的“隔離直線”.已知, 為自然對(duì)數(shù)的底數(shù)).
(1)求的極值;
(2)函數(shù)和是否存在隔離直線?若存在,求出此隔離直線方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某同學(xué)用“五點(diǎn)法”畫(huà)函數(shù)f(x)=Asin(ωx+φ)(ω>0,|φ|< )在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如表:
ωx+φ | 0 | π | 2π | ||
x | |||||
Asin(ωx+φ) | 0 | 5 | ﹣5 | 0 |
(1)請(qǐng)將上表數(shù)據(jù)補(bǔ)充完整,填寫(xiě)在相應(yīng)位置,并直接寫(xiě)出函數(shù)f(x)的解析式;
(2)將y=f(x)圖象上所有點(diǎn)向左平行移動(dòng)θ(θ>0)個(gè)單位長(zhǎng)度,得到y(tǒng)=g(x)的圖象.若y=g(x)圖象的一個(gè)對(duì)稱(chēng)中心為( ,0),求θ的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)為定義在R上的奇函數(shù),當(dāng)x≥0,f(x)=log3(x+3)﹣a,則不等式|f(x)|<1的解集為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,平面平面,,是等邊三角形,已知,.
(1)設(shè)是上的一點(diǎn),證明:平面平面;
(2)求四棱錐的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com