【題目】為了積極穩(wěn)妥疫情期間的復(fù)學(xué)工作,市教育局抽調(diào)5名機關(guān)工作人員去某街道3所不同的學(xué)校開展駐點服務(wù),每個學(xué)校至少去1人,若甲、乙兩人不能去同一所學(xué)校,則不同的分配方法種數(shù)為___________

【答案】114

【解析】

先排甲乙,將最后的三人分成四種情況:(1)三人一起去第三所學(xué)校,(2)兩個人去第三所學(xué)校,另一個人到前兩所學(xué)校中任意一所,(3)一人到第三所學(xué)校,另兩個人一起到前兩所學(xué)校中的任意一所,(4)一人到第三所學(xué)校,另兩人分別到前兩所學(xué)校中的任意一所.再分別計算即可得到答案.

分四種情況:

1)安排甲去一所學(xué)校共有種方法,

安排乙到第二所學(xué)校共有種方法,

余下三人去第三所學(xué)校共有種方法,共有種方法.

2)安排甲去一所學(xué)校共有種方法,

安排乙到第二所學(xué)校共有種方法,

余下的三人中兩人一起去第三所學(xué)校有種方法,

另一個人去前兩所學(xué)校中任意一所共有種方法,

共有種方法.

3)安排甲去一所學(xué)校共有種方法,

安排乙到第二所學(xué)校共有種方法,

余下的三人中一人去第三所學(xué)校有種方法,

另外兩人一起去前兩所學(xué)校中任意一所共有種方法,

共有種方法.

4)安排甲去一所學(xué)校共有種方法,

安排乙到第二所學(xué)校共有種方法,

余下的三人中一人去第三所學(xué)校有種方法,

另外兩人分別去前兩所學(xué)校中任意一所共有種方法,

共有種方法.

綜上共有種方法.

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)若在點處的切線為,求的值;

(2)求的單調(diào)區(qū)間;

(3)若,求證:在時,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是拋物線的焦點,過點且與坐標軸不垂直的直線交拋物線于、兩點,交拋物線的準線于點,其中,.過點軸的垂線交拋物線于點,直線交拋物線于點.

1)求的值;

2)求四邊形的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】201913日嫦娥四號探測器成功實現(xiàn)人類歷史上首次月球背面軟著陸,我國航天事業(yè)取得又一重大成就,實現(xiàn)月球背面軟著陸需要解決的一個關(guān)鍵技術(shù)問題是地面與探測器的通訊聯(lián)系.為解決這個問題,發(fā)射了嫦娥四號中繼星“鵲橋”,鵲橋沿著圍繞地月拉格朗日點的軌道運行.點是平衡點,位于地月連線的延長線上.設(shè)地球質(zhì)量為M,月球質(zhì)量為M,地月距離為R,點到月球的距離為r,根據(jù)牛頓運動定律和萬有引力定律,r滿足方程:

.

設(shè),由于的值很小,因此在近似計算中,則r的近似值為

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】.已知函數(shù).

1)討論上的單調(diào)性;

2)設(shè),若當,且時,,求整數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“雜交水稻之父”袁隆平一生致力于雜交水稻技術(shù)的研究、應(yīng)用與推廣,發(fā)明了“三系法”秈型雜交水稻,成功研究出“兩系法”雜交水稻,創(chuàng)建了超級雜交稻技術(shù)體系,為我國糧食安全、農(nóng)業(yè)科學(xué)發(fā)展和世界糧食供給做出了杰出貢獻;某雜交水稻種植研究所調(diào)查某地水稻的株高,得出株高(單位:cm)服從正態(tài)分布,其密度曲線函數(shù)為,則下列說法正確的是(

A.該地水稻的平均株高為100cm

B.該地水稻株高的方差為10

C.隨機測量一株水稻,其株高在120cm以上的概率比株高在70cm以下的概率大

D.隨機測量一株水稻,其株高在(80,90)和在(100,110)(單位:cm)的概率一樣大

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線,設(shè)直線經(jīng)過點且與拋物線相交于兩點,拋物線、兩點處的切線相交于點,直線,分別與軸交于兩點.

1)求點的軌跡方程

2)當點不在軸上時,記的面積為,的面積為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),為自然對數(shù)的底數(shù).

(Ⅰ)若為單調(diào)遞增函數(shù),求實數(shù)的取值范圍;

(Ⅱ)當存在極小值時,設(shè)極小值點為,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題共l4)

已知函數(shù)f(x)=x +, h(x)=

(I)設(shè)函數(shù)F(x)=f(x)h(x),求F(x)的單調(diào)區(qū)間與極值;

(Ⅱ)設(shè)a∈R,解關(guān)于x的方程log4[]=1og2h(a-x)log2h (4-x)

(Ⅲ)試比較的大小.

查看答案和解析>>

同步練習(xí)冊答案