【題目】某港口O要將一件重要物品用小艇送到一艘正在航行的輪船上,在小艇出發(fā)時,輪船位于港口的O北偏西30°且與該港口相距20海里的A處,并正以30海里/小時的航行速度沿正東方向勻速行駛.假設(shè)該小艇沿直線方向以v海里/小時的航行速度勻速行駛,經(jīng)過t小時與輪船相遇.
(I)若希望相遇時小艇的航行距離最小,則小艇航行速度的大小應(yīng)為多少?
(II)為保證小艇在30分鐘內(nèi)(含30分鐘)能與輪船相遇,試確定小艇航行速度的最小值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若曲線與直線滿足:①與在某點處相切;②曲線在附近位于直線的異側(cè),則稱曲線與直線“切過”.下列曲線和直線中,“切過”的有________.(填寫相應(yīng)的編號)
①與 ②與 ③與
④與 ⑤與
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】1,4,9,16……這些數(shù)可以用圖1中的點陣表示,古希臘畢達哥拉斯學(xué)派將其稱為正方形數(shù),記第個數(shù)為.在圖2的楊輝三角中,第行是展開式的二項式系數(shù),,…,,記楊輝三角的前行所有數(shù)之和為.
(1)求和的通項公式;
(2)當(dāng)時,比較與的大小,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為橢圓的左、右頂點,為其右焦點,是橢圓上異于的動點,且面積的最大值為.
(1)求橢圓的方程;
(2)直線與橢圓在點處的切線交于點,當(dāng)點在橢圓上運動時,求證:以 為直徑的圓與直線恒相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知如下四個命題:①在線性回歸模型中,相關(guān)指數(shù)表示解釋變量對于預(yù)報變量的貢獻率,越接近于,表示回歸效果越好;②在回歸直線方程中,當(dāng)解釋變量每增加一個單位時,預(yù)報變量平均增加個單位;③兩個變量相關(guān)性越強,則相關(guān)系數(shù)的絕對值就越接近于;④對分類變量與,對它們的隨機變量的觀測值來說,越小,則“與有關(guān)系”的把握程度越大.其中正確命題的序號是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)若函數(shù)在處取得極值,求實數(shù)的值;
(2)在(1)的結(jié)論下,若關(guān)于的不等式,當(dāng)時恒成立,求的值;
(3)令,若關(guān)于的方程在內(nèi)至少有兩個解,求出實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】深受廣大球迷喜愛的某支歐洲足球隊.在對球員的使用上總是進行數(shù)據(jù)分析,為了考察甲球員對球隊的貢獻,現(xiàn)作如下數(shù)據(jù)統(tǒng)計:
球隊勝 | 球隊負 | 總計 | |
甲參加 | |||
甲未參加 | |||
總計 |
(1)求的值,據(jù)此能否有的把握認為球隊勝利與甲球員參賽有關(guān);
(2)根據(jù)以往的數(shù)據(jù)統(tǒng)計,乙球員能夠勝任前鋒、中鋒、后衛(wèi)以及守門員四個位置,且出場率分別為:,當(dāng)出任前鋒、中鋒、后衛(wèi)以及守門員時,球隊輸球的概率依次為:.則:
1)當(dāng)他參加比賽時,求球隊某場比賽輸球的概率;
2)當(dāng)他參加比賽時,在球隊輸了某場比賽的條件下,求乙球員擔(dān)當(dāng)前鋒的概率;
3)如果你是教練員,應(yīng)用概率統(tǒng)計有關(guān)知識.該如何使用乙球員?
附表及公式:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了鼓勵節(jié)約用電,遼寧省實行階梯電價制度,其中每戶的用電單價與戶年用電量的關(guān)系如下表所示.
分檔 | 戶年用電量(度) | 用電單價(元/度) |
第一階梯 | 0.5 | |
第二階梯 | 0.55 | |
第三階梯 | 0.80 |
記用戶年用電量為度時應(yīng)繳納的電費為元.
(1)寫出的解析式;
(2)假設(shè)居住在沈陽的范偉一家2018年共用電3000度,則范偉一家2018年應(yīng)繳納電費多少元?
(3)居住在大連的張莉一家在2018年共繳納電費1942元,則張莉一家在2018年用了多少度電?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com