設(shè)集合M={x|x2-2x-3<0},N={x|log2(1-x)<1},則M∩∁RN等于( 。
A、[-1,1]
B、(-1,0)
C、[1,3)
D、(0,1)
考點(diǎn):交、并、補(bǔ)集的混合運(yùn)算
專題:集合
分析:解一元二次不等式求得M,解對數(shù)不等式求得N,再根據(jù)補(bǔ)集的定義求得∁RN,利用兩個(gè)集合的交集的定義求得M∩∁RN.
解答: 解:∵集合M={x|x2-2x-3<0}={x|-1<x<3},
N={x|log2(1-x)<1}={x|0<1-x<2}={x|-1<x<1},
∴∁RN={x|x≤-1,或 x≥1},∴M∩∁RN=[1,3),
故選:C.
點(diǎn)評:本題主要考查一元二次不等式的解法,對數(shù)不等式的解法,求集合的補(bǔ)集,兩個(gè)集合的交集的定義和求法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)幾何體的三視圖如圖所示,則該幾何體內(nèi)切球的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某三棱錐的三視圖如圖所示,則該幾何體的體積為( 。
A、
2
3
B、
4
3
C、
8
3
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知下列四個(gè)命題:
①底面積和高均相等的柱體體積是錐體體積的3倍:
②正方體的截面是一個(gè)n邊形,則n的最大值是6;
③在棱長為1的正方體ABCD-AB1C1D1中,三棱錐A1-ABC的體積是
1
4
;
④4條棱均為
2
的四面體的體積是
1
3
;
其中真命題的序號是(  )
A、①②③B、①②④
C、①③④D、②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)i為虛數(shù)單位,復(fù)數(shù)
2+i
i2
在復(fù)平面上對應(yīng)的點(diǎn)在( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)已知a,b,m均為整數(shù)(m>0),若a和b被m除所得的余數(shù)相同,則稱a和b對模m同余,記為a≡b(modm),若a=C
 
0
40
+C
 
1
40
•2+C
 
3
40
•22+…+C
 
40
40
•240,且a≡b(mod10),則b的值可以是(  )
A、2011B、2012
C、2013D、2014

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=a+bi(i為虛數(shù)單位),集合A={-1,0,1,2},B={-2,-1,1}.若a,b∈A∩B,則|z|等于( 。
A、1
B、
2
C、2
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

二次函數(shù)y=ax2+bx與指數(shù)函數(shù)y=(-
b
a
x的圖象只可能是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從一批蘋果中,隨機(jī)抽取50個(gè),其重量(單位:克)的頻數(shù)分布圖如下:
分?jǐn)?shù)(重量) [120,125) [125,130) [130,135) [135,140]
頻數(shù)(個(gè)) 5 15 20 10
(1)用分層抽樣的方法從重量在[120,125)和[135,140)的蘋果中共抽取6個(gè),其重量在[120,125)的有幾個(gè)?
(2)在(1)中抽出的6個(gè)蘋果中,任取2個(gè),求重量在[120,125)和[135,140)重各有1的概率.

查看答案和解析>>

同步練習(xí)冊答案