【題目】下面使用類比推理正確的是( )
A. 由“a(b+c)=ab+ac”類比推出“cos(α+β)=cosα+cosβ”
B. 由“若3a<3b,則a<b”類比推出“若ac<bc,則a<b”
C. 由“平面中垂直于同一直線的兩直線平行”類比推出“空間中垂直于同一平面的兩平面平行”
D. 由“等差數(shù)列{an}中,若a10=0,則a1+a2+…+an=a1+a2+…+a19-n(n<19,n∈N*)”類比推出“在等比數(shù)列{bn}中,若b9=1,則有b1b2…bn=b1b2…b17-n(n<17,n∈N*)”
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P-ABCD的底面是正方形,PA⊥底面ABCD,PA=2,∠PDA=45,點(diǎn)E、F分別為棱AB、PD的中點(diǎn).
(1)求證:AF∥平面PCE;
(2)求三棱錐C-BEP的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-5:不等式選講]
已知函數(shù)f(x)=|x+1|﹣|2x﹣3|.
(1)在圖中畫出y=f(x)的圖象;
(2)求不等式|f(x)|>1的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=a--lnx,g(x)=ex-ex+1.
(1)若a=2,求函數(shù)f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若f(x)=0恰有一個(gè)解,求a的值;
(3)若g(x)≥f(x)恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知O為坐標(biāo)原點(diǎn),F(xiàn)是橢圓C: =1(a>b>0)的左焦點(diǎn),A,B分別為C的左,右頂點(diǎn).P為C上一點(diǎn),且PF⊥x軸,過(guò)點(diǎn)A的直線l與線段PF交于點(diǎn)M,與y軸交于點(diǎn)E.若直線BM經(jīng)過(guò)OE的中點(diǎn),則C的離心率為( 。
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=+lg(3x)的定義域?yàn)镸.
(Ⅰ)求M;
(Ⅱ)當(dāng)x∈M時(shí),求g(x)=4x-2x+1+2的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線C:y2=2x的焦點(diǎn)為F,平行于x軸的兩條直線l1 , l2分別交C于A,B兩點(diǎn),交C的準(zhǔn)線于P,Q兩點(diǎn).
(1)若F在線段AB上,R是PQ的中點(diǎn),證明AR∥FQ;
(2)若△PQF的面積是△ABF的面積的兩倍,求AB中點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知奇函數(shù)f(x)=a-(a∈R,e為自然對(duì)數(shù)的底數(shù)).
(1)判定并證明f(x)的單調(diào)性;
(2)若對(duì)任意實(shí)數(shù)x,f(x)>m2-4m+2恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市居民用水?dāng)M實(shí)行階梯水價(jià),每人月用水量中不超過(guò)w立方米的部分按4元/立方米收費(fèi),超出w立方米的部分按10元/立方米收費(fèi),從該市隨機(jī)調(diào)查了10000位居民,獲得了他們某月的用水量數(shù)據(jù),整理得到如圖頻率分布直方圖:
(1)如果w為整數(shù),那么根據(jù)此次調(diào)查,為使80%以上居民在該月的用水價(jià)格為4元/立方米,w至少定為多少?
(2)假設(shè)同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的右端點(diǎn)值代替,當(dāng)w=3時(shí),估計(jì)該市居民該月的人均水費(fèi).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com