【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,已知cosC+(cosA﹣ sinA)cosB=0.
(1)求角B的大小;
(2)若a+c=1,求b的取值范圍.

【答案】
(1)解:由已知得:﹣cos(A+B)+cosAcosB﹣ sinAcosB=0,

即sinAsinB﹣ sinAcosB=0,

∵sinA≠0,∴sinB﹣ cosB=0,即tanB= ,

又B為三角形的內(nèi)角,

則B=


(2)解:∵a+c=1,即c=1﹣a,cosB= ,

∴由余弦定理得:b2=a2+c2﹣2accosB,即b2=a2+c2﹣ac=(a+c)2﹣3ac=1﹣3a(1﹣a)=3(a﹣ 2+ ,

∵0<a<1,∴ ≤b2<1,

≤b<1


【解析】(1)已知等式第一項利用誘導(dǎo)公式化簡,第二項利用單項式乘多項式法則計算,整理后根據(jù)sinA不為0求出tanB的值,由B為三角形的內(nèi)角,利用特殊角的三角函數(shù)值即可求出B的度數(shù);(2)由余弦定理列出關(guān)系式,變形后將a+c及cosB的值代入表示出b2 , 根據(jù)a的范圍,利用二次函數(shù)的性質(zhì)求出b2的范圍,即可求出b的范圍.
【考點(diǎn)精析】本題主要考查了兩角和與差的余弦公式和余弦定理的定義的相關(guān)知識點(diǎn),需要掌握兩角和與差的余弦公式:;余弦定理:;;才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在三棱錐P﹣ABQ中,PB⊥平面ABQ,BA=BP=BQ,D,C,E,F(xiàn)分別是AQ,BQ,AP,BP的中點(diǎn),AQ=2BD,PD與EQ交于點(diǎn)G,PC與FQ交于點(diǎn)H,連接GH.

(1)求證:AB∥GH;
(2)求二面角D﹣GH﹣E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 已知函數(shù)f(x)=ax3+bx2的圖象經(jīng)過點(diǎn)M(1,4),曲線在點(diǎn)M處的切線恰好與直線x+9y﹣3=0垂直.

(1)求實數(shù)a、b的值

(2)若函數(shù)f(x)在區(qū)間[m,m+1]上單調(diào)遞增,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1當(dāng)時,若函數(shù)恰有一個零點(diǎn),求實數(shù)的取值范圍;

2當(dāng), 時,對任意,有成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,半徑為1的半圓O與等邊三角形ABC夾在兩平行線l1 , l2之間,l∥l1 , l與半圓相交于F,G兩點(diǎn),與三角形ABC兩邊相交于E,D兩點(diǎn).設(shè)弧 的長為x(0<x<π),y=EB+BC+CD,若l從l1平行移動到l2 , 則函數(shù)y=f(x)的圖象大致是(

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ( 為自然對數(shù)的底數(shù)).

(Ⅰ)求函數(shù)的極值;

(Ⅱ)當(dāng)時,若直線與曲線沒有公共點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1)設(shè)直線l過點(diǎn)(23)且與直線2x+y+1=0垂直,lx軸,y軸分別交于A、B兩點(diǎn),求|AB|;

2)求過點(diǎn)A4-1)且在x軸和y軸上的截距相等的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

)求函數(shù)的單調(diào)區(qū)間和極值;

)當(dāng)時,若函數(shù)在區(qū)間上存在唯一零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)△AnBnCn的三邊長分別為an , bn , cn , △AnBnCn的面積為Sn , n=1,2,3…若b1>c1 , b1+c1=2a1 , an+1=an , ,則(
A.{Sn}為遞減數(shù)列
B.{Sn}為遞增數(shù)列
C.{S2n1}為遞增數(shù)列,{S2n}為遞減數(shù)列
D.{S2n1}為遞減數(shù)列,{S2n}為遞增數(shù)列

查看答案和解析>>

同步練習(xí)冊答案