某商場準(zhǔn)備在五一勞動(dòng)節(jié)期間舉行促銷活動(dòng),根據(jù)市場調(diào)查,該商場決定從3種服裝商品、2種家電商品、4種日用商品中,選出3種商品進(jìn)行促銷活動(dòng).
(Ⅰ)試求選出的3種商品中至少有一種日用商品的概率;
(Ⅱ)商場對(duì)選出的A商品采用的促銷方案是有獎(jiǎng)銷售,即在該商品現(xiàn)價(jià)的基礎(chǔ)上將價(jià)格提高90元,同時(shí)允許顧客有3次抽獎(jiǎng)的機(jī)會(huì),若中獎(jiǎng),則每次中獎(jiǎng)都可獲得一定數(shù)額的獎(jiǎng)金.假設(shè)顧客每次抽獎(jiǎng)時(shí)獲獎(jiǎng)與否是等可能的,請(qǐng)問:商場應(yīng)將中獎(jiǎng)獎(jiǎng)金數(shù)額最高定為多少元,才能使促銷方案對(duì)自己有利?
(Ⅰ)P=1-.
(Ⅱ)要使促銷方案對(duì)商場有利,應(yīng)使顧客獲獎(jiǎng)獎(jiǎng)金數(shù)的期望值不大于商場的提價(jià)數(shù)額,因此應(yīng)有1.5x≤90,所以x≤60,故商場應(yīng)將中獎(jiǎng)獎(jiǎng)金數(shù)額最高定為60元,才能使促銷方案對(duì)自己有利.

試題分析:(Ⅰ)從3種服裝商品、2種家電商品、4種日用商品中,選出3種商品,一共可以有種不同的選法. 選出的3種商品中,沒有日用商品的選法有種,所以選出的3種商品中至少有一種日用商品的概率為P=1-=1-.
(Ⅱ)假設(shè)商場將中獎(jiǎng)獎(jiǎng)金數(shù)額定為x元,則顧客在三次抽獎(jiǎng)中所獲得的獎(jiǎng)金總額是一隨機(jī)變量ξ,其所有可能的取值為,0,x,2x,3x.
ξ=0時(shí)表示顧客在三次抽獎(jiǎng)中都沒有獲獎(jiǎng),所以P(ξ=0)=()3=,
同理可得P(ξ=x)=()()2=,
P(ξ=2x)=()2()=,P(ξ=3x)=()3=.
于是顧客在三次抽獎(jiǎng)中所獲得的獎(jiǎng)金總額的期望是
Eξ=0×+x·+2x·+3x·=1.5x.
要使促銷方案對(duì)商場有利,應(yīng)使顧客獲獎(jiǎng)獎(jiǎng)金數(shù)的期望值不大于商場的提價(jià)數(shù)額,因此應(yīng)有1.5x≤90,所以x≤60,故商場應(yīng)將中獎(jiǎng)獎(jiǎng)金數(shù)額最高定為60元,才能使促銷方案對(duì)自己有利.
點(diǎn)評(píng):中檔題,本題綜合性較強(qiáng),綜合考查古典概型概率的計(jì)算,互斥(對(duì)立)事件的概率計(jì)算,數(shù)學(xué)期望的應(yīng)用,及利用數(shù)學(xué)知識(shí)解決實(shí)際問題的能力。求出顧客在三次抽獎(jiǎng)中所獲得的獎(jiǎng)金總額的期望值,與商場的提價(jià)數(shù)額比較,即可求得結(jié)論。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函 數(shù).
(1)若曲線在點(diǎn)處的切線與直線垂直,求函數(shù)的單調(diào)區(qū)間;
(2)若對(duì)于都有成立,試求的取值范圍;
(3)記.當(dāng)時(shí),函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)f(x)=x2+2x-1 的值域?yàn)椋?nbsp; )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

定義域?yàn)镽的函數(shù)滿足,當(dāng)時(shí),則當(dāng)時(shí),函數(shù)恒成立,則實(shí)數(shù)的取值范圍為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列函數(shù)中,在區(qū)間上為增函數(shù)的是(  ).
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1)求函數(shù)的最大值;
(2)若函數(shù)有相同極值點(diǎn),
①求實(shí)數(shù)的值;
②若對(duì)于為自然對(duì)數(shù)的底數(shù)),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若f(a)=(3m-1)a+b-2m,當(dāng)m∈[0,1]時(shí)f(a)≤1恒成立,則a+b的最大值為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).設(shè)關(guān)于x的不等式的解集為且方程的兩實(shí)根為.
(1)若,求的關(guān)系式;
(2)若,求的范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)的圖像如右所示。
(1)求證:在區(qū)間為增函數(shù);
(2)試討論在區(qū)間上的最小值.(要求把結(jié)果寫成分段函數(shù)的形式)

查看答案和解析>>

同步練習(xí)冊(cè)答案