(1)求曲線W的方程;
(2)求證:=λ(λ∈R);
(3)求△PBC面積S的取值范圍.
答案:(1)解:由題知,曲線W是以F(1,0)為焦點(diǎn),以直線x=-1為準(zhǔn)線的拋物線,
所以曲線W的方程為y2=4x.
(2)證明:因?yàn)橹本l與曲線W交于A、B兩點(diǎn),所以l的斜率k存在,且k≠0,
設(shè)直線l的方程為y=k(x+1),由得k2x2+(2k2-4)x+k2=0.
因?yàn)橹本l與曲線W交于A、B兩點(diǎn),
所以k≠0,Δ=4(k2-2)2-4k4>0,即|k|<1且k≠0.
設(shè)點(diǎn)A,B的坐標(biāo)分別為(x1,y1),(x2,y2),
則x1+x2=,x1x2=1,點(diǎn)C的坐標(biāo)為(x1,-y1),
y1=k(x1+1),y2=k(x2+1).
所以=(x1-1,-y1),=(x2-1,y2).
又因?yàn)?x1-1)y2-(x2-1)(-y1)=(x1-1)k(x2+1)+(x2-1)k(x1+1)=k(2x1x2-2)=0,
所以=λ.
(3)由題意S=|PF|·|y1+y2|
=|k(x1+x2+2)|=|k(+2)|=.
因?yàn)閨k|<1且k≠0,所以S的取值范圍是(4,+∞).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
FC |
FB |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011屆福建廈門雙十中學(xué)高三考前熱身理數(shù)試卷 題型:解答題
本題有(1)、(2)、(3)三個(gè)選答題,每小題7分,請(qǐng)考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計(jì)分.作答時(shí),先用2B鉛筆在答題卡上把所選題目對(duì)應(yīng)的題號(hào)涂黑,并將所選題號(hào)填入括號(hào)中.
(1)(本小題滿分7分)選修4-2:矩陣與變換
已知矩陣,向量.
(I)求矩陣的特征值、和特征向量;
(II)求的值.
(2)(本小題滿分7分)選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,已知曲線C的參數(shù)方程為.以直角坐標(biāo)系原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為.
(Ⅰ)求直線l的直角坐標(biāo)方程;
(Ⅱ)點(diǎn)P為曲線C上的動(dòng)點(diǎn),求點(diǎn)P到直線l距離的最大值.
(3)(本小題滿分7分)選修4-5:不等式選講
(Ⅰ)已知:a、b、;w.w.w.k.s.5.u.c.o.m
(Ⅱ)某長(zhǎng)方體從一個(gè)頂點(diǎn)出發(fā)的三條棱長(zhǎng)之和等于3,求其對(duì)角線長(zhǎng)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2008年北京市朝陽區(qū)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com