某賽季,甲、乙兩名籃球運(yùn)動(dòng)員都參加了11場比賽,他們每場比賽得分的情況用如圖所示的莖葉圖表示,若甲運(yùn)動(dòng)員的中位數(shù)為a,乙運(yùn)動(dòng)員的眾數(shù)為b,則a-b=( 。
A、4B、6C、8D、12
考點(diǎn):極差、方差與標(biāo)準(zhǔn)差,眾數(shù)、中位數(shù)、平均數(shù)
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:根據(jù)給出的兩組數(shù)據(jù),把數(shù)據(jù)按照從小到大排列,根據(jù)共有11個(gè)數(shù)字,寫出中位數(shù)、眾數(shù),再求差,得到結(jié)果.
解答: 解:由題意知,
∵甲運(yùn)動(dòng)員的得分按照從小到大排列是7,8,9,15,17,19,23,24,26,32,41,
共有11 個(gè)數(shù)字,最中間一個(gè)是19,
∴a=19;
乙運(yùn)動(dòng)員得分按照從小到大的順序排列是5,7,8,11,11,13,20,22,30,31,40,
共有11個(gè)數(shù)據(jù),出現(xiàn)次數(shù)最多的一個(gè)是11,
∴b=11
∴a-b=8
故選:C.
點(diǎn)評:本題考查中位數(shù),對于一組數(shù)據(jù),通常要求的是這組數(shù)據(jù)的眾數(shù),中位數(shù),平均數(shù)分別表示一組數(shù)據(jù)的特征,這樣的問題可以出現(xiàn)在選擇題或填空題,考查最基本的知識點(diǎn).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若直角三角形周長為1,則它的面積的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
a2
-
y2
b2
=1(a,b>0)的漸近線上任意一點(diǎn)P到兩個(gè)焦點(diǎn)的距離之差的絕對值與2a的大小關(guān)系為( 。
A、恒等于2aB、恒大于2a
C、恒小于2aD、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足an+2-2an+1+an=0(n∈N*),且a2=6,a6=-2,則數(shù)列{an}的前9項(xiàng)和S9=( 。
A、-2B、0C、4D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在1,2,3,…,9中任取2個(gè)數(shù),有如下事件:
①恰有一個(gè)偶數(shù)和恰有一個(gè)奇數(shù);
②至少有一個(gè)是奇數(shù)和兩個(gè)數(shù)都是奇數(shù);
③至少有一個(gè)是奇數(shù)和兩個(gè)都是偶數(shù);
④至少有一個(gè)是奇數(shù)和至少有一個(gè)是偶數(shù).
其中互斥事件的個(gè)數(shù)是( 。
A、1B、2C、3D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}和{bn}均為等差數(shù)列,a1+b1=3,a3+b3=7,則a10+b10的值為( 。
A、20B、21C、22D、23

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩個(gè)不同的平面α、β和兩條不重合的直線m、n,有下列四個(gè)命題:
①若m∥n,m⊥α,則n⊥α
②若m⊥α,α⊥β,則m∥β
③若m⊥α,m∥n,n?β,則α⊥β
④若m∥α,α∩β=n,則m∥n
其中正確命題的個(gè)數(shù)是( 。
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域?yàn)镽的奇函數(shù)f(x),當(dāng)x≥0時(shí),f(x)=|x-
a
|-
a
(a≥0),且對x∈R,恒有f(x+a)≥f(x),則實(shí)數(shù)a的取值范圍是( 。
A、[0,2]
B、{0}∪[2,+∞)
C、[0,
1
16
]
D、{0}∪[16,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在(0,+∞)上的函數(shù)f(x)滿足對任意的x1,x2∈(0,+∞)(x1≠x2),有(x2-x1)(f(x2)-f(x1))>0,則滿足f(2x-1)<f(
1
3
)的x的取值范圍是(  )
A、(
1
3
,
2
3
B、[
1
3
,
2
3
C、(
1
2
,
2
3
D、[
1
2
,
2
3

查看答案和解析>>

同步練習(xí)冊答案