(2008•深圳二模)一個(gè)質(zhì)點(diǎn)從A出發(fā)依次沿圖中線段到達(dá)B、C、D、E、F、G、H、I、J各點(diǎn),最后又回到A(如圖所示),其中:AB⊥BC,AB∥CD∥EF∥HG∥IJ,BC∥DE∥FG∥HI∥JA.欲知此質(zhì)點(diǎn)所走路程,至少需要測(cè)量n條線段的長(zhǎng)度,則n=( 。
分析:根據(jù)所給的平行于垂直關(guān)系,在垂直于AB的所有線中只要測(cè)量BC的長(zhǎng)度,在水平方向的線段上只要線測(cè)量AB,則DC+EF+JI-GH與AB相等,再測(cè)量出GH 即可.
解答:解:∵BC=DE+FG+HI+JA,
∴在垂直于AB的所有線中只要測(cè)量BC的長(zhǎng)度,
在水平方向的線段上只要線測(cè)量AB,
則DC+EF+JI-GH與AB相等,
再測(cè)量出GH 即可,
故要測(cè)量質(zhì)點(diǎn)所走的路程,只要測(cè)量三段的長(zhǎng)度即可,
故選B.
點(diǎn)評(píng):本題看出線段的在圖形中找出相等的線段,看出用幾條線段的長(zhǎng)度就可以包含所有的結(jié)果,本題是一個(gè)中檔題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•深圳二模)在△ABC中,A=
π
4
,cosB=
10
10

(1)求cosC;
(2)設(shè)BC=
5
,求
CA
CB
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•深圳二模)當(dāng)點(diǎn)M(x,y)在如圖所示的三角形ABC內(nèi)(含邊界)運(yùn)動(dòng)時(shí),目標(biāo)函數(shù)z=kx+y取得最大值的一個(gè)最優(yōu)解為(1,2),則實(shí)數(shù)k的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•深圳二模)已知數(shù)列{an}滿足a1=a,an+1=
(4n+6)an+4n+10
2n+1
(n∈N*)

(Ⅰ)試判斷數(shù)列{
an+2
2n+1
}
是否為等比數(shù)列?若不是,請(qǐng)說(shuō)明理由;若是,試求出通項(xiàng)an
(Ⅱ)如果a=1時(shí),數(shù)列{an}的前n項(xiàng)和為Sn.試求出Sn,并證明
1
S3
+
1
S4
+…+
1
Sn
1
10
(n≥3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•深圳二模)如圖所示的算法中,令a=tanθ,b=sinθ,c=cosθ,若在集合{θ| -
π
4
<θ<
4
,  θ≠0,  θ≠
π
4
, θ≠
π
2
}
中,給θ取一個(gè)值,輸出的結(jié)果是sinθ,則θ值所在范圍是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案