【題目】如圖所示,棱長為a的正方體,N是棱的中點;
(1)求直線AN與平面所成角的大��;
(2)求到平面ANC的距離.
科目:高中數(shù)學 來源: 題型:
【題目】如圖, 是邊長為
的正方形,平面
平面
,
,
,
,
.
(1)求證:面面
;
(2)求直線與平面
所成角的正弦值;
(3)在線段上是否存在點
,使得二面角
的大小為
?若存在,求出
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設,
,其中m是不等于零的常數(shù),
(1)時,直接寫出
的值域;
(2)求的單調遞增區(qū)間;
(3)已知函數(shù)(
),定義:
(
),
(
).其中,
表示函數(shù)
在D上的最小值,
表示函數(shù)
在D上的最大值.例如:
,
,則
,
,
,
.當
時,設
,不等式
恒成立,求t,n的取值范圍;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,取同離心率的兩個橢圓成軸對稱內外嵌套得一個標志,為美觀考慮,要求圖中標記的①、②、③)三個區(qū)域面積彼此相等.(已知:橢圓面積為圓周率與長半軸、短半軸長度之積,即橢圓面積為
)
(1)求橢圓的離心率的值;
(2)已知外橢圓長軸長為6,用直角角尺兩條直角邊內邊緣與外橢圓相切,移動角尺繞外橢圓一周,得到由點M生成的軌跡將兩橢圓圍起來,整個標志完成.請你建立合適的坐標系,求出點M的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若兩個函數(shù)的圖象經(jīng)過若干次平移后能夠重合,則稱這兩個函數(shù)為“同形”函數(shù),給出下列四個函數(shù):,
,
,
,則“同形”函數(shù)是( )
A.與
B.
與
C.
與
D.
與
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,斜三棱柱中,平面
平面
,
為棱
的中點,
與
點
.若
,
60°.
(Ⅰ)證明:直線平面
;
(Ⅱ)證明:平面平面
;
(Ⅲ)求直線與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:
的中心為
,一個方向向量為
的直線
與
只有一個公共點
(1)若且點
在第二象限,求點
的坐標;
(2)若經(jīng)過的直線
與
垂直,求證:點
到直線
的距離
;
(3)若點、
在橢圓上,記直線
的斜率為
,且
為直線
的一個法向量,且
求
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的周期為
,圖象的一個對稱中心為
.將函數(shù)
圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),再將所得到的圖象向右平移
個單位長度后得到函數(shù)
的圖象.
(1)求函數(shù)與
的解析式.
(2)定義:當函數(shù)取得最值時,函數(shù)圖象上對應的點稱為函數(shù)的最值點,如果函數(shù)的圖象上至少有一個最大值點和一個最小值點在圓
的內部或圓周上,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在四棱錐中,側面
⊥底面
,底面
為直角梯形,
//
,
,
,
,
為
的中點.
(Ⅰ)求證:PA//平面BEF;
(Ⅱ)若PC與AB所成角為,求
的長;
(Ⅲ)在(Ⅱ)的條件下,求二面角F-BE-A的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com