如果命題P:∈{},命題Q:{},那么下列結論不正確的是

[  ]

A.“P或Q”為真
B.“P且Q”為假
C.“P”為假
D.“Q”為假
答案:B
解析:

解:


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+(a+1)x+lg|a+2|(a∈R,且a≠-2).
(I)若f(x)能表示成一個奇函數(shù)g(x)和一個偶函數(shù)h(x)的和,求g(x)和h(x)的解析式;
(Ⅱ)命題P:函數(shù)f(x)在區(qū)間[(a+1)2,+∞)上是增函數(shù);命題Q:函數(shù)g(x)是減函數(shù).如果命題P、Q有且僅有一個是真命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設命題p:函數(shù)f(x)=lg(ax2+2ax+2)的定義域為R;命題q:不等式
2x+1
<a+x
對任意x≥-
1
2
均成立,如果命題p或q為真命題,命題p且q為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設命題p:函數(shù)f(x)=x3-ax-1在區(qū)間[-1,1]上單調遞減;命題q:函數(shù)y=ln(x2+ax+1)的值域是R.如果命題p或q為真命題,p且q為假命題,則實數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:f(x)=x2-4mx+4m2+2在區(qū)間[-1,3]上的最小值等于2;命題q:{x|m≤x≤2m+1}⊆{x|x2≥1}.如果“命題p且q為假命題”,“命題p或q為真命題”試求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設命題p:?x0∈R,x02-2ax0+2-a=0,命題q:?x∈[1,+∞),a≤log16(3x+1),如果命題p∨q為真命題,命題p∧q為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案