【題目】如圖是計(jì)算1 的值的程序框圖,則圖中①、②處應(yīng)填寫(xiě)的語(yǔ)句分別是( )

A.n=n+2,i>10?
B.n=n+2,i≥10?
C.n=n+1,i>10?
D.n=n+1,i≥10?

【答案】A
【解析】解:①的意圖為表示各項(xiàng)的分母,

而分母來(lái)看相差2,

∴①處應(yīng)填寫(xiě)的語(yǔ)句n=n+2.②的意圖是為直到型循環(huán)結(jié)構(gòu)構(gòu)造滿足跳出循環(huán)的條件,

而分母從1到19共10項(xiàng),

∴②處應(yīng)填寫(xiě)的語(yǔ)句i>10?.

所以答案是:A.

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解程序框圖的相關(guān)知識(shí),掌握程序框圖又稱(chēng)流程圖,是一種用規(guī)定的圖形、指向線及文字說(shuō)明來(lái)準(zhǔn)確、直觀地表示算法的圖形;一個(gè)程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說(shuō)明.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓E: + =1(a>b>0)的右焦點(diǎn)為F,短軸的一個(gè)端點(diǎn)為M,直線l:3x﹣4y=0交橢圓E于A,B兩點(diǎn),若|AF|+|BF|=4,點(diǎn)M到直線l的距離不小于 ,則橢圓E的離心率的取值范圍是( )
A.(0, ]
B.(0, ]
C.[ ,1)
D.[ ,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)= ,關(guān)于x的方程[f(x)]2+mf(x)﹣1=0有三個(gè)不同的實(shí)數(shù)解,則實(shí)數(shù)m的取值范圍是(
A.(﹣∞,e﹣
B.(e﹣ ,+∞)
C.(0,e)
D.(1,e)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2015年下學(xué)期某市教育局對(duì)某校高三文科數(shù)學(xué)進(jìn)行教學(xué)調(diào)研,從該校文科生中隨機(jī)抽取40名學(xué)生的數(shù)學(xué)成績(jī)進(jìn)行統(tǒng)計(jì),將他們的成績(jī)分成六段[80,90),[90,100),[100,110),[110,120),[120,130),[130,140)后得到如圖所示的頻率分布直方圖.

(1)求這40名學(xué)生中數(shù)學(xué)成績(jī)不低于120分的學(xué)生人數(shù);
(2)若從數(shù)學(xué)成績(jī)[80,100)內(nèi)的學(xué)生中任意抽取2人,求成績(jī)?cè)赱80,90)中至少有一人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知{an}是等差數(shù)列,其中a10=30,a20=50.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=an﹣20,求數(shù)列{bn}的前n項(xiàng)和Tn的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地政府調(diào)查了工薪階層1000人的月工資收入,并根據(jù)調(diào)查結(jié)果畫(huà)出如圖所示的頻率分布直方圖,其中工資收入分組區(qū)間是[10,15),[15,20),[20,25),[25,30)[30,35),[35,40](單位:百元)
(Ⅰ)為了了解工薪階層對(duì)工資收入的滿意程度,要用分層抽樣的方法從調(diào)查的1000人中抽取100人做電話詢問(wèn),求月工資收入在[30,35)內(nèi)應(yīng)抽取的人數(shù);
(Ⅱ)根據(jù)頻率分布直方圖估計(jì)這1000人的平均月工資為多少元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) 且函數(shù)y=f(x)圖象上點(diǎn)(1,f(1))處的切線斜率為0.
(1)試用含有a的式子表示b,并討論f(x)的單調(diào)性;
(2)對(duì)于函數(shù)圖象上的不同兩點(diǎn)A(x1 , y1),B(x2 , y2)如果在函數(shù)圖象上存在點(diǎn)M(x0 , y0),(x0∈(x1 , x2))使得點(diǎn)M處的切線l∥AB,則稱(chēng)AB存在“跟隨切線”.特別地,當(dāng) 時(shí),又稱(chēng)AB存在“中值跟隨切線”.試問(wèn):函數(shù)f(x)上是否存在兩點(diǎn)A,B使得它存在“中值跟隨切線”,若存在,求出A,B的坐標(biāo),若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=x3﹣3x+1在閉區(qū)間[﹣3,0]上的最大值、最小值分別是(
A.1,﹣1
B.3,﹣17
C.1,﹣17
D.9,﹣19

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于空間直角坐標(biāo)系O﹣xyz中的一點(diǎn)P(1,2,3),有下列說(shuō)法:
①點(diǎn)P到坐標(biāo)原點(diǎn)的距離為 ;
②OP的中點(diǎn)坐標(biāo)為( );
③點(diǎn)P關(guān)于x軸對(duì)稱(chēng)的點(diǎn)的坐標(biāo)為(﹣1,﹣2,﹣3);
④點(diǎn)P關(guān)于坐標(biāo)原點(diǎn)對(duì)稱(chēng)的點(diǎn)的坐標(biāo)為(1,2,﹣3);
⑤點(diǎn)P關(guān)于坐標(biāo)平面xOy對(duì)稱(chēng)的點(diǎn)的坐標(biāo)為(1,2,﹣3).
其中正確的個(gè)數(shù)是( )
A.2
B.3
C.4
D.5

查看答案和解析>>

同步練習(xí)冊(cè)答案