【題目】血藥濃度(Plasma Concentration)是指藥物吸收后在血漿內(nèi)的總濃度. 藥物在人體內(nèi)發(fā)揮治療作用時,該藥物的血藥濃度應(yīng)介于最低有效濃度和最低中毒濃度之間.已知成人單次服用1單位某藥物后,體內(nèi)血藥濃度及相關(guān)信息如圖所示:

根據(jù)圖中提供的信息,下列關(guān)于成人使用該藥物的說法中,不正確的個數(shù)是

①首次服用該藥物1單位約10分鐘后,藥物發(fā)揮治療作用

②每次服用該藥物1單位,兩次服藥間隔小于2小時,一定會產(chǎn)生藥物中毒

③每間隔5.5小時服用該藥物1單位,可使藥物持續(xù)發(fā)揮治療作用

④首次服用該藥物1單位3小時后,再次服用該藥物1單位,不會發(fā)生藥物中毒

A. 1個 B. 2個 C. 3個 D. 4個

【答案】A

【解析】對于,由圖象中最低有效濃度與體內(nèi)血液濃度的第一個交點坐標(biāo)可知正確;對于②,當(dāng)?shù)诙䝼單位的藥服用一小時時的血液濃度為峰濃度,此時第一個單位的藥物已服用三小時,此時血液濃度必超過最低中毒濃度,因此一定會產(chǎn)生藥物中毒,正確;對于,由圖知, 每間隔5.5小時服用該藥物,血液濃度都在最低有效濃度之上,正確;對于④, 首次服用該藥物1單位3小時后,再次服用該藥物1單位,過一個小時之后,第二個單位的藥物達(dá)到峰濃度,兩個單位的藥物的血液濃度仍超過最低中毒濃度,故錯誤;綜上可知,應(yīng)選A.

點睛:本題考查根據(jù)圖象識別信息的能力,屬于中檔題目.觀察圖象提供的信息,準(zhǔn)確的獲取信息是解題關(guān)鍵.由圖象可得函數(shù)先增后減,在t=1時取到極大值,在血液濃度所對應(yīng)的值超過最低中毒濃度時,會發(fā)生藥物中毒,因此兩次服藥的間隔不能太小,需要看是否有兩次藥效之和超過最低值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為坐標(biāo)原點,上有兩點,滿足關(guān)于直線軸對稱.

(1)求的值;

(2)若,求線段的長及其中點坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,過的左焦點的直線,直線被圓截得的弦長為.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)的右焦點為,在圓上是否存在點,滿足,若存在,指出有幾個這樣的點(不必求出點的坐標(biāo));若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖:在四棱錐P﹣ABCD中,底面ABCD是菱形,∠BAD=60°,AB=2,PA=3,PA⊥底面ABCD,EPC中點,FAB中點.

(Ⅰ)求證:BE∥平面PDF;

(Ⅱ)求直線PD與平面PFB所成角的正切值;

(Ⅲ)求三棱錐P﹣DEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)=log 為奇函數(shù),a為常數(shù),
(1)求a的值;
(2)證明f(x)在區(qū)間(1,+∞)上單調(diào)遞增;
(3)若x∈[3,4],不等式f(x)>( x+m恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣4x+a+3,a∈R.
(1)若函數(shù)y=f(x)的圖象與x軸無交點,求a的取值范圍;
(2)若函數(shù)y=f(x)在[﹣1,1]上存在零點,求a的取值范圍;
(3)設(shè)函數(shù)g(x)=bx+5﹣2b,b∈R.當(dāng)a=0時,若對任意的x1∈[1,4],總存在x2∈[1,4],使得f(x1)=g(x2),求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為 (為參數(shù)),以直角坐標(biāo)系原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(Ⅰ)求曲線的普通方程與直線的直角坐標(biāo)方程;

(Ⅱ)設(shè)點為曲線上的動點,求點到直線距離的最大值及其對應(yīng)的點的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本小題滿分12分已知拋物線的頂點在坐標(biāo)原點,對稱軸為軸,焦點為,拋物線上一點的橫坐標(biāo)為,且.

求此拋物線的方程;

過點做直線交拋物線兩點,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在[﹣1,1]上的奇函數(shù)f(x),已知當(dāng)x∈[﹣1,0]時的解析式f(x)= (a∈R).
(1)寫出f(x)在[0,1]上的解析式;
(2)求f(x)在[0,1]上的最大值.

查看答案和解析>>

同步練習(xí)冊答案