【題目】已知橢圓的左,右焦點(diǎn)分別為,,M是橢圓E上的一個(gè)動點(diǎn),且的面積的最大值為.

1)求橢圓E的標(biāo)準(zhǔn)方程,

2)若,,四邊形ABCD內(nèi)接于橢圓E,,記直線AD,BC的斜率分別為,,求證:為定值.

【答案】12)證明見解析

【解析】

(1)設(shè)橢圓E的半焦距為c,由題意可知,當(dāng)M為橢圓E的上頂點(diǎn)或下頂點(diǎn)時(shí),的面積取得最大值,求出,即可得答案;

2)根據(jù)題意可知,,因?yàn)?/span>,所以可設(shè)直線CD的方程為,將直線代入曲線的方程,利用韋達(dá)定理得到的關(guān)系,再代入斜率公式可證得為定值.

1)設(shè)橢圓E的半焦距為c,由題意可知,

當(dāng)M為橢圓E的上頂點(diǎn)或下頂點(diǎn)時(shí),的面積取得最大值.

所以,所以,,

故橢圓E的標(biāo)準(zhǔn)方程為.

2)根據(jù)題意可知,,因?yàn)?/span>,

所以可設(shè)直線CD的方程為.

,消去y可得,

所以,即.

直線AD的斜率,

直線BC的斜率,

所以

,故為定值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市在精準(zhǔn)扶貧和生態(tài)文明建設(shè)的專項(xiàng)工作中,為改善農(nóng)村生態(tài)環(huán)境,建設(shè)美麗鄉(xiāng)村,開展農(nóng)村生活用水排污管道村村通”.已知排污管道外徑為1米,當(dāng)兩條管道并行經(jīng)過一塊農(nóng)田時(shí),如圖,要求兩根管道最近距離不小于0.25米,埋沒的最小覆土厚度(路面至管頂)不低于0.5.埋設(shè)管道前先挖掘一條橫截面為等腰梯形的溝渠,且管道所在的兩圓分別與兩腰相切.設(shè).

1)為了減少農(nóng)田的損毀,則當(dāng)為何值時(shí),挖掘的土方量最少?

2)水管用吊車放入渠底前需了解吊繩的長度,在(1)的條件下計(jì)算長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求曲線的普通方程和曲線的直角坐標(biāo)方程;

2)若點(diǎn)在曲線上,點(diǎn)在曲線上,求的最小值及此時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在梯形中,,過分別作,,垂足分別為.,,已知,將梯形沿同側(cè)折起,得空間幾何體,如圖2.

1)若,證明:平面.

2)若,是線段上靠近點(diǎn)的三等分點(diǎn),求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在斜三棱柱中,平面平面,,,,均為正三角形,EAB的中點(diǎn).

(Ⅰ)證明:平面

(Ⅱ)求斜三棱柱截去三棱錐后剩余部分的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù),下列說法正確的是______(填上所有正確命題序號).(1)的極大值點(diǎn) ;(2)函數(shù)有且只有1個(gè)零點(diǎn);(3)存在正實(shí)數(shù),使得恒成立 ;(4)對任意兩個(gè)正實(shí)數(shù),且,若,則.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論上的零點(diǎn)個(gè)數(shù);

(2)當(dāng)時(shí),若存在,使,求實(shí)數(shù)的取值范圍.(為自然對數(shù)的底數(shù),其值為2.71828……)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公園準(zhǔn)備在一圓形水池里設(shè)置兩個(gè)觀景噴泉,觀景噴泉的示意圖如圖所示,兩點(diǎn)為噴泉,圓心的中點(diǎn),其中米,半徑米,市民可位于水池邊緣任意一點(diǎn)處觀賞.

(1)若當(dāng)時(shí),,求此時(shí)的值;

(2)設(shè),且

(i)試將表示為的函數(shù),并求出的取值范圍;

(ii)若同時(shí)要求市民在水池邊緣任意一點(diǎn)處觀賞噴泉時(shí),觀賞角度的最大值不小于,試求兩處噴泉間距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了更好地支持中小型企業(yè)的發(fā)展,某市決定對部分企業(yè)的稅收進(jìn)行適當(dāng)?shù)臏p免,某機(jī)構(gòu)調(diào)查了當(dāng)?shù)氐闹行⌒推髽I(yè)年收入情況,并根據(jù)所得數(shù)據(jù)畫出了樣本的頻率分布直方圖,下面三個(gè)結(jié)論:

樣本數(shù)據(jù)落在區(qū)間的頻率為0.45;

如果規(guī)定年收入在500萬元以內(nèi)的企業(yè)才能享受減免稅政策,估計(jì)有55%的當(dāng)?shù)刂行⌒推髽I(yè)能享受到減免稅政策;

樣本的中位數(shù)為480萬元.

其中正確結(jié)論的個(gè)數(shù)為( )

A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊答案