已知等比數(shù)列{xn}的各項(xiàng)為不等于1的正數(shù),數(shù)列{yn}滿足=2(a>0,且a≠1),設(shè)y3=18,y6=12.

(1)數(shù)列{yn}的前多少項(xiàng)和最大,最大值為多少?

(2)試判斷是否存在自然數(shù)M,使得當(dāng)n>M時(shí),xn>1恒成立?若存在,求出相應(yīng)的M;若不存在,請(qǐng)說(shuō)明理由.

(3)令an=(n>13,n∈N),試比較an與an+1的大小.

解:(1)yn=2logaxn,yn+1=2logaxn+1,則yn+1-yn=2(logaxn+1-logaxn)=2loga.

∵{xn}為等比數(shù)列,∴為定值.

∴{yn}為等差數(shù)列.

又y6-y3=3d=12-18,∴d=-2,y1=y3-2d=22.

∴Sn=22n+·(-2)=-n2+23n.

∴當(dāng)n=11或n=12時(shí),Sn取得最大值,且最大值為132.                       

(2)∵yn=22+(n-1)(-2)=2logaxn,

∴xn=a12-n.又xn=a12-n>1,當(dāng)a>1時(shí),12-n>0,n<12;當(dāng)0<a<1時(shí),12-n<0,n>12.

∴當(dāng)0<a<1時(shí),存在M=12,當(dāng)n>M時(shí),xn>1恒成立.                        

(3)an===1+.

∵an在(13,+∞)上是減函數(shù),

∴an>an+1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•廣東模擬)已知等比數(shù)列{xn}的各項(xiàng)為不等于1的正數(shù),數(shù)列{yn}滿足
ynlogaxn
=2
(a>0,且a≠1),設(shè)y3=18,y6=12.
(1)數(shù)列{yn}的前多少項(xiàng)和最大,最大值是多少?
(2)試判斷是否存在自然數(shù)M,使得n>M時(shí),xn>1恒成立,若存在,求出最小的自然數(shù)M,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{xn}的各項(xiàng)為不等于1的正數(shù),數(shù)列{yn}滿足ynlogxna=2(a>0,a≠1),設(shè)y3=18,y6=12.
(1)求數(shù)列{yn}的前多少項(xiàng)和最大,最大值為多少?
(2)試判斷是否存在自然數(shù)M,使當(dāng)n>M時(shí),xn>1恒成立?若存在,求出相應(yīng)的M,若不存在,請(qǐng)說(shuō)明理由;
(3)令an=logxnxn+1(n>13,n∈N),試判斷數(shù)列{an}的增減性?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2006•松江區(qū)模擬)(文)已知等比數(shù)列{xn}的公比是不為1的正數(shù),數(shù)列{yn}滿足yn•logxna=2(a>0,a≠1),當(dāng)y4=15,y7=9時(shí),數(shù)列{yn}的前k項(xiàng)和最大,則k的值為                                           (  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年甘肅省蘭州市高三第一學(xué)期期中考試?yán)砜茢?shù)學(xué) 題型:解答題

已知等比數(shù)列{xn}的各項(xiàng)為不等于1的正數(shù),數(shù)列{yn}滿足=2(a>0,且a≠1),設(shè)y3=18, y6=12.

(1)數(shù)列{yn}的前多少項(xiàng)和最大,最大值為多少?

(2)試判斷是否存在自然數(shù)M,使得當(dāng)n>M時(shí),xn>1恒成立,若存在,求出相應(yīng)的M;若不存在,請(qǐng)說(shuō)明理由;

(3)令試比較的大小.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:松江區(qū)模擬 題型:單選題

(文)已知等比數(shù)列{xn}的公比是不為1的正數(shù),數(shù)列{yn}滿足yn•logxna=2(a>0,a≠1),當(dāng)y4=15,y7=9時(shí),數(shù)列{yn}的前k項(xiàng)和最大,則k的值為                                           (  )
A.9B.10C.11D.12(yn=23-2n)

查看答案和解析>>

同步練習(xí)冊(cè)答案