.(本小題滿分14分)
已知且方程有兩個實根為
,(這里為常數(shù)).
(1)求函數(shù)的解析式 (2)求函數(shù)的值域.

(1)
(2)


解:(1)依已知條件可知方程即為  因為是上述方程的解,所以  ………………6分
解得所以函數(shù)的解析式為 ………………7分
(2)因為,  ………………10分
當(dāng),當(dāng)且僅當(dāng)時取等號,所以 當(dāng),當(dāng)且僅當(dāng)時取等號,所以  
∴函數(shù).   ………………14分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

((12分).
已知函數(shù),常數(shù)
(1)討論函數(shù)的奇偶性,并說明理由;
2)若函數(shù)上為增函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題


.根據(jù)表格中的數(shù)據(jù),可以判定方程的一個根所在的區(qū)間為,則k的值為(  )
A.-1B.0 C.1D.2
x
-1
0
1
2
3

0.37
1
2.72
7.39
20.09
x+2
1
2
3
4
5
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(滿分16分)本題有2小題,第1小題7分,第2小題9分.
據(jù)測算:2011年,某企業(yè)如果不搞促銷活動,那么某一種產(chǎn)品的銷售量只能是1萬件;如果搞促銷活動,那么該產(chǎn)品銷售量(亦即該產(chǎn)品的年產(chǎn)量)萬件與年促銷費用萬元()滿足為常數(shù)).已知2011年生產(chǎn)該產(chǎn)品的前期投入需要8萬元,每生產(chǎn)1萬件該產(chǎn)品需要再投入16萬元,企業(yè)將每件該產(chǎn)品的銷售價格定為每件產(chǎn)品年平均成本的1.5倍(定價不考慮促銷成本).
(1)若2011年該產(chǎn)品的銷售量不少于2萬件,則該產(chǎn)品年促銷費用最少是多少?
(2)試將2011年該產(chǎn)品的年利潤(萬元)表示為年促銷費用(萬元)的函數(shù),并求2011年的最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


(本小題滿分12分)
某旅游點有50輛自行車供游客租賃使用,管理這些自行車的費用是每日115元。根據(jù)經(jīng)驗,若每輛自行車的日租金不超過6元,則自行車可以全部租出;若超過6元,則每超過1元,租不出去的自行車就增加3輛。為了便于結(jié)算,每輛自行車的日租金x(元)只取整數(shù),并且要求出租自行車一日的總收入必須高于這一日的管理費用,用y(元)表示出租自行車的日凈收入(即一日中出租自行車的總收入減去管理費用后的所得)。
(1)求函數(shù)f(x)的解析式及其定義域;
(2)試問當(dāng)每輛自行車的日租金定為多少元時,才能使一日的凈收入最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
某研究所計劃利用“神七”宇宙飛船進行新產(chǎn)品搭載實驗,計劃搭載若干件新產(chǎn)品A、B,該所要根據(jù)該產(chǎn)品的研制成本、搭載實驗費用、產(chǎn)品重量和預(yù)計產(chǎn)生收益來決定具體安排,通過調(diào)查,有關(guān)數(shù)據(jù)如下表:
如何安排這兩種產(chǎn)品的件數(shù)進行搭載,才能使總預(yù)計收益達到最大,最大預(yù)計收益是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分) 已知函數(shù)上的連續(xù)函數(shù)
(Ⅰ) 若,判斷上是否有零根存在?沒有,請說明理由;若有,并在精確度為的條件下(即根所在區(qū)間長度小于),用二分法求出使這個零根存在的小區(qū)間;
(Ⅱ)若函數(shù)在區(qū)間上存在零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)的定義域為:                                

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知方程有實數(shù)根,則復(fù)數(shù)__________________.

查看答案和解析>>

同步練習(xí)冊答案