【題目】從某企業(yè)生產的某種產品中抽取100件,測量這些產品的一項質量指標值.由測量表得到如下頻率分布直方圖
(1)補全上面的頻率分布直方圖(用陰影表示);
(2)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中間值作為代表,據(jù)此估計這種產品質量指標值服從正態(tài)分布Z(μ,σ2),其中μ近似為樣本平均值,σ2近似為樣本方差s2(組數(shù)據(jù)取中間值);
①利用該正態(tài)分布,求從該廠生產的產品中任取一件,該產品為合格品的概率;
②該企業(yè)每年生產這種產品10萬件,生產一件合格品利潤10元,生產一件不合格品虧損20元,則該企業(yè)的年利潤是多少?
參考數(shù)據(jù):=5.1,若Z~N(μ,σ2),則P(μ﹣σ,μ+σ)=0.6826,P(μ﹣2σ,μ+2σ)=0.9544.
【答案】(1)見解析;(2)①0.9544,②863200.
【解析】
(1)由頻率分布圖求出[95,105)的頻率,由此能作出補全頻率分布直方圖;
(2)求出質量指標值的樣本平均數(shù)、質量指標值的樣本方差;
①由(2)知Z~N(100,104),從而求出P(79.6<Z<120.4),注意運用所給數(shù)據(jù);
②設這種產品每件利潤為隨機變量E(X),即可求得EX.
(1)由頻率分布直方圖得:[95,105)的頻率為:1﹣(0.006+0.026+0.022+0.008)×10=0.038,補全上面的頻率分布直方圖(用陰影表示):
質量指標值的樣本平均數(shù)為:
=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100.
質量指標值的樣本方差為
S2=(﹣20)2×0.06+(﹣10)2×0.26+0×0.38+102×0.22+202×0.08=104.
(2)①由(1)知Z~N(100,104),從而P(79.6<Z<120.4)=P(100﹣2×10.2<Z<100+2×10.2)=0.9544;
②由①知一件產品的質量指標值位于區(qū)間(79.6,120.4)的概率為0.9544,
該企業(yè)的年利潤是EX=100000[0.9544×10﹣(1﹣0.9544)×20]=863200.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,圓C的參數(shù)方程為為參數(shù)以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,直線的極坐標方程為,且圓心C在直線l上.
Ⅰ求直線l的直角坐標方程及圓C的極坐標方程;
Ⅱ若是直線l上一點,是圓C上一點,求的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的中心是坐標原點,它的短軸長為,一個焦點為,一個定點,且,過點的直線與橢圓相交于兩點..
(1)求橢圓的方程及離心率.
(2)如果以為直徑的圓過原點,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知圓經過, 兩點,且圓心在直線上.
(1)求圓的標準方程;
(2)過圓內一點作兩條相互垂直的弦,當時,求四邊形的面積.
(3)設直線與圓相交于兩點, ,且的面積為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ex﹣有兩個極值點.
(1)求實數(shù)a的取值范圍;
(2)若函數(shù)f(x)的兩個極值點分別為x1,x2,求證:x1+x2>2.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了調查一款電視機的使用時間,研究人員對該款電視機進行了相應的測試,將得到的數(shù)據(jù)統(tǒng)計如下圖所示:
并對不同年齡層的市民對這款電視機的購買意愿作出調查,得到的數(shù)據(jù)如下表所示:
愿意購買這款電視機 | 不愿意購買這款電視機 | 總計 | |
40歲以上 | 800 | 1000 | |
40歲以下 | 600 | ||
總計 | 1200 |
(1)根據(jù)圖中的數(shù)據(jù),試估計該款電視機的平均使用時間;
(2)根據(jù)表中數(shù)據(jù),判斷是否有99.9%的把握認為“愿意購買該款電視機”與“市民的年齡”有關;
(3)若按照電視機的使用時間進行分層抽樣,從使用時間在和的電視機中抽取5臺,再從這5臺中隨機抽取2臺進行配件檢測,求被抽取的2臺電視機的使用時間都在內的概率.
附: | 0.100 | 0.050 | 0.010 | 0.001 |
2.706 | 3.841> | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市場研究人員為了了解產業(yè)園引進的甲公司前期的經營狀況,對該公司2018年連續(xù)六個月的利潤進行了統(tǒng)計,并根據(jù)得到的數(shù)據(jù)繪制了相應的折線圖,如圖所示
(1)由折線圖可以看出,可用線性回歸模型擬合月利潤(單位:百萬元)與月份代碼之間的關系,求關于的線性回歸方程,并預測該公司2019年3月份的利潤;
(2)甲公司新研制了一款產品,需要采購一批新型材料,現(xiàn)有,兩種型號的新型材料可供選擇,按規(guī)定每種新型材料最多可使用個月,但新材料的不穩(wěn)定性會導致材料損壞的年限不相同,現(xiàn)對,兩種型號的新型材料對應的產品各件進行科學模擬測試,得到兩種新型材料使用壽命的頻數(shù)統(tǒng)計如下表:
使用壽命 材料類型 | 個月 | 個月 | 個月 | 個月 | 總計 |
如果你是甲公司的負責人,你會選擇采購哪款新型材料?
參考數(shù)據(jù):,.參考公式:回歸直線方程為,其中 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為慶祝國慶節(jié),某中學團委組織了“歌頌祖國,愛我中華”知識競賽,從參加考試的學生中抽出60名,將其成績(成績均為整數(shù))分成[40,50),[50,60),…,[90,100)六組,并畫出如圖所示的部分頻率分布直方圖,觀察圖形,回答下列問題:
(1)求第四組的頻率,并補全這個頻率分布直方圖;
(2)估計這次考試的及格率(60分及以上為及格)和平均分.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com