在平面直角坐標(biāo)系中,已知分別是橢圓的左、右焦點(diǎn),橢圓與拋物線有一個(gè)公共的焦點(diǎn),且過點(diǎn).

(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)點(diǎn)是橢圓在第一象限上的任一點(diǎn),連接,過點(diǎn)作斜率為的直線,使得與橢圓有且只有一個(gè)公共點(diǎn),設(shè)直線的斜率分別為,,試證明為定值,并求出這個(gè)定值;
(III)在第(Ⅱ)問的條件下,作,設(shè)于點(diǎn),
證明:當(dāng)點(diǎn)在橢圓上移動(dòng)時(shí),點(diǎn)在某定直線上.

(Ⅰ)橢圓的方程為;(Ⅱ)3;(III)點(diǎn)在直線上.

解析試題分析:(Ⅰ)由拋物線的焦點(diǎn)求出橢圓的焦點(diǎn),又橢圓過點(diǎn),得:,
,解方程組可得橢圓的方程:
(Ⅱ)設(shè)出切點(diǎn)的坐標(biāo)和切線的方程,利用直線和橢圓相切的條件,證明為定值.
(III)利用(Ⅱ)的結(jié)果,由,寫出直線的方程,可解出于點(diǎn)
的坐標(biāo),進(jìn)而證明當(dāng)點(diǎn)在橢圓上移動(dòng)時(shí),點(diǎn)在某定直線上.

試題解析:(Ⅰ)由題意得 ,
,         2分
消去可得,,解得(舍去),則,
求橢圓的方程為.        4分
(Ⅱ)設(shè)直線方程為,并設(shè)點(diǎn)
.
,         6分
,當(dāng)時(shí),直線與橢圓相交,所以,
,,       8分
,整理得:.而,代入中得
為定值.        10分
(用導(dǎo)數(shù)求解也可,若直接用切線公式扣4分,只得2分)
(III)的斜率為:,又由,
從而得直線的方程為:,聯(lián)立方程,
消去得方程,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/d6/4/z1trz1.png" style="vertical-align:middle;" />, 所以 ,
即點(diǎn)在直線上.         14分
考點(diǎn):1、橢圓的標(biāo)準(zhǔn)方程;2、拋物線的標(biāo)準(zhǔn)方程;3、直線與橢圓的位置關(guān)系;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點(diǎn)、,動(dòng)點(diǎn)滿足:,且
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)已知圓W: 的切線與軌跡相交于P,Q兩點(diǎn),求證:以PQ為直徑的圓經(jīng)過坐標(biāo)原點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知橢圓 的離心率為 ,點(diǎn) 為其下焦點(diǎn),點(diǎn)為坐標(biāo)原點(diǎn),過 的直線 (其中)與橢圓 相交于兩點(diǎn),且滿足:.

(1)試用  表示
(2)求  的最大值;
(3)若 ,求  的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線.
(1)若曲線是焦點(diǎn)在軸上的橢圓,求的取值范圍;
(2)設(shè),過點(diǎn)的直線與曲線交于,兩點(diǎn),為坐標(biāo)原點(diǎn),若為直角三角形,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知橢圓的右頂點(diǎn)為A(2,0),點(diǎn)P(2e,)在橢圓上(e為橢圓的離心率).

(1)求橢圓的方程;
(2)若點(diǎn)B,C(C在第一象限)都在橢圓上,滿足,且,求實(shí)數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓上的點(diǎn)到其兩焦點(diǎn)距離之和為,且過點(diǎn)
(Ⅰ)求橢圓方程;
(Ⅱ)為坐標(biāo)原點(diǎn),斜率為的直線過橢圓的右焦點(diǎn),且與橢圓交于點(diǎn),,若,求△的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點(diǎn)在拋物線上.
(1)若的三個(gè)頂點(diǎn)都在拋物線上,記三邊,所在直線的斜率分別為,,求的值;
(2)若四邊形的四個(gè)頂點(diǎn)都在拋物線上,記四邊,,,所在直線的斜率分別為,,,,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓)的右焦點(diǎn)為,離心率為.
(Ⅰ)若,求橢圓的方程;
(Ⅱ)設(shè)直線與橢圓相交于,兩點(diǎn),分別為線段的中點(diǎn). 若坐標(biāo)原點(diǎn)在以為直徑的圓上,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓.

(1)橢圓的短軸端點(diǎn)分別為(如圖),直線分別與橢圓交于兩點(diǎn),其中點(diǎn)滿足,且.
①證明直線軸交點(diǎn)的位置與無關(guān);
②若∆面積是∆面積的5倍,求的值;
(2)若圓:.是過點(diǎn)的兩條互相垂直的直線,其中交圓兩點(diǎn),交橢圓于另一點(diǎn).求面積取最大值時(shí)直線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案