【題目】設(shè)函數(shù)f(x)= 與g(x)=a2lnx+b有公共點,且在公共點處的切線方程相同,則實數(shù)b的最大值為( )
A.
B.
C.
D.
【答案】A
【解析】解:設(shè)y=f(x)與y=g(x)(x>0)在公共點P(x0 , y0)處的切線相同、 f′(x)=3x﹣2a,g′(x)= ,
由題意f(x0)=g(x0),f′(x0)=g′(x0),
即 x02﹣2ax0=a2lnx0+b,3x0﹣2a=
由3x0﹣2a= 得x0=a或x0=﹣ a(舍去),
即有b= a2﹣2a2﹣a2lna=﹣ a2﹣a2lna.
令h(t)=﹣ t2﹣t2lnt(t>0),則h′(t)=2t(1+lnt),
于是當2t(1+lnt)>0,即0<t< 時,h′(t)>0;
當2t(1+lnt)<0,即t> 時,h′(t)<0.
故h(t)在(0, )為增函數(shù),在( ,+∞)為減函數(shù),
于是h(t)在(0,+∞)的最大值為h( )= ,
故b的最大值為 .
故選A.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的值域為.
(1)判斷此函數(shù)的奇偶性,并說明理由;
(2)判斷此函數(shù)在的單調(diào)性,并用單調(diào)性的定義證明你的結(jié)論;
(3)求出在上的最小值,并求的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: (a>b>0)的離心率為 ,左、右焦點分別為圓F1、F2 , M是C上一點,|MF1|=2,且| || |=2 .
(1)求橢圓C的方程;
(2)當過點P(4,1)的動直線l與橢圓C相交于不同兩點A、B時,線段AB上取點Q,且Q滿足| || |=| || |,證明點Q總在某定直線上,并求出該定直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex+be﹣x﹣2asinx(a,b∈R).
(1)當a=0時,討論函數(shù)f(x)的單調(diào)區(qū)間;
(2)當b=﹣1時,若f(x)>0對任意x∈(0,π)恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以直角坐標系的原點O為極點,x軸的正半軸為極軸,且兩個坐標系取相等的長度單位,已知直線l的參數(shù)方程為 (t為參數(shù),0<φ<π),曲線C的極坐標方程為ρcos2θ=8sinθ.
(1)求直線l的普通方程和曲線C的直角坐標方程;
(2)設(shè)直線l與曲線C相交于A、B兩點,當φ變化時,求|AB|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2lnx+ax﹣ (a∈R)在x=2處的切線經(jīng)過點(﹣4,2ln2)
(1)討論函數(shù)f(x)的單調(diào)性
(2)若不等式 恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖O是等腰三角形ABC內(nèi)一點,圓O與△ABC的底邊BC交于M,N兩點,與底邊上的高交于點G,且與AB,AC分別相切于E,F兩點.
(1)(I)證明EF//BC
(2)(II)若AG等于圓O半徑,且AE=MN=2,求四邊形EBCF的面積
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù))記x為的從小到大的第n()個極植點,證明:
(1)數(shù)列的等比數(shù)列
(2)若則對一切恒成立
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com