【題目】如圖,已知四棱錐P﹣ABCD的底面為菱形,∠BCD=120°,AB=PC=2,AP=BP=

(1)求證:AB⊥PC;
(2)求側面BPC與側面DPC所成的銳二面角的余弦值.

【答案】
(1)證明:取AB的中點O,連結PO,CO,AC,

∵△APB為等腰三角形,∴PO⊥AB,

又∵四邊形ABCD是菱形,∠BCD=120°,

∴△ABC是等邊三角形,∴CO⊥AB,

又OC∩PO=O,∴AB⊥平面PCO,

又PC平面PCO,∴AB⊥PC


(2)解:∵四棱錐P﹣ABCD的底面為菱形,∠BCD=120°,AB=PC=2,AP=BP= ,

∴OP= =1,OC= = ,∴PC2=OP2+OC2,∴OP⊥OC,

以O為原點,OC為x軸,OB為y軸,OP為z軸,建立空間直角坐標系,

則B(0,1,0),C( ,0,0),P(0,0,1),D( ),

=( ), =(0,﹣1,1), =( ,﹣1),

=(x,y,z)是平面BPC的一個法向量,

,取x=1,得 =(1, ),

設平面DPC的一個法向量 =(a,b,c),

,取a=1,得 =(1,0, ),

∴cos< >= = = ,

∴側面BPC與側面DPC所成的銳二面角的余弦值為


【解析】(1)取AB的中點O,連結PO,CO,AC,推導出PO⊥AB,CO⊥AB,從而AB⊥平面PCO,由此能證明AB⊥PC.(2)以O為原點,OC為x軸,OB為y軸,OP為z軸,建立空間直角坐標系,利用向量法能求出側面BPC與側面DPC所成的銳二面角的余弦值.
【考點精析】關于本題考查的空間中直線與直線之間的位置關系,需要了解相交直線:同一平面內,有且只有一個公共點;平行直線:同一平面內,沒有公共點;異面直線: 不同在任何一個平面內,沒有公共點才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】己知在平面直角坐標系,的參數(shù)方程為 (為參數(shù))以軸為極軸, 為極點建立極坐標系,在該極坐標系下,圓是以點為圓心,且過點的圓心.

(1)求圓及圓在平而直角坐標系下的直角坐標方程;

(2)求圓上任一點與圓上任一點之間距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩運動員進行射擊訓練.已知他們擊中的環(huán)數(shù)都穩(wěn)定在,,環(huán),且每次射擊擊中與否互不影響甲、乙射擊命中環(huán)數(shù)的概率如下表:

若甲、乙兩運動員各射擊次,求甲運動員擊中環(huán)且乙運動員擊中環(huán)的概率.

若甲射擊次,用表示這次射擊擊中環(huán)以上(含環(huán))的次數(shù),求隨機變量的分布列及期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M、N分別是A1B1、A1C1的中點,BC=AC=CC1 , 則CN與AM所成角的余弦值等于( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線 的焦點為,過點的直線交拋物線位于第一象限)兩點.

(1)若直線的斜率為,過點分別作直線的垂線,垂足分別為,求四邊形的面積;

(2)若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某單位安排位員工在春節(jié)期間大年初一到初七值班,每人值班天,若位員工中的甲、乙排在相鄰的兩天,丙不排在初一,丁不排在初七,則不同的安排方案共有(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點,圓.

(1)若點為圓上的動點,求線段中點所形成的曲線的方程;

(2)若直線過點,且被(1)中曲線截得的弦長為2,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD的底面ABCD為矩形,PA⊥平面ABCD,點E是棱PD的中點,點F是PC的中點F.

(1)證明:PB∥平面AEC;
(2)若ABCD為正方形,探究在什么條件下,二面角C﹣AF﹣D大小為60°?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,函數(shù).

(1)時,求函數(shù)的單調遞增區(qū)間;

(2)求函數(shù)的零點個數(shù).

查看答案和解析>>

同步練習冊答案