【題目】設(shè)數(shù)列的前項和為,對任意的正整數(shù),都有成立,記.

1)求數(shù)列與數(shù)列的通項公式;

2)記,設(shè)數(shù)列的前項和為,求證:對任意正整數(shù),都有;

3)設(shè)數(shù)列的前項和為,是否存在正整數(shù),使得成立?若存在,找出一個正整數(shù);若不存在,請說明理由.

【答案】1;(2)證明見解析;(3)不存在,理由見解析

【解析】

1)利用可得數(shù)列是等比數(shù)列,根據(jù)等比數(shù)列的通項公式可得,進而可得;

2)通過放縮可得,再按照兩種情況分別證明即可;

3)通過放縮得到,再分為奇數(shù)和為偶數(shù)兩種情況討論即可得到答案.

1)令,得,得,

因為,所以

所以,

所以,

因為,所以,

所以數(shù)列是首項為,公比為的等比數(shù)列,

所以,.

2)由

,

,

時,,所以

時,

,

∴對任意正整數(shù)都有.

3,,

為偶數(shù)時,

為奇數(shù)時,,

所以存在正整數(shù),使得成立.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】樹立和踐行“綠水青山就是金山銀山,堅持人與自然和諧共生”的理念越來越深入人心,已形成了全民自覺參與,造福百姓的良性循環(huán).據(jù)此,某網(wǎng)站退出了關(guān)于生態(tài)文明建設(shè)進展情況的調(diào)查,調(diào)查數(shù)據(jù)表明,環(huán)境治理和保護問題仍是百姓最為關(guān)心的熱點,參與調(diào)查者中關(guān)注此問題的約占.現(xiàn)從參與關(guān)注生態(tài)文明建設(shè)的人群中隨機選出200人,并將這200人按年齡分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.

(1)求出的值;

(2)求這200人年齡的樣本平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點值作代表)和中位數(shù)(精確到小數(shù)點后一位);

(3)現(xiàn)在要從年齡較小的第1,2組中用分層抽樣的方法抽取5人,再從這5人中隨機抽取3人進行問卷調(diào)查,求這2組恰好抽到2人的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線與坐標軸的交點都在圓C.

1)求圓C的方程;

2)若圓C與直線交于A,B兩點,且,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an}的前n項和為Sn,若Sm-1=-4,Sm=0,Sm+2=14(m≥2,且m∈N*).

(1)求m的值;

(2)若數(shù)列{bn}滿足=log2bn(n∈N*),求數(shù)列{(an+6)·bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2020年寒假期間新冠肺炎肆虐,全國人民眾志成城抗疫情.某市要求全體市民在家隔離,同時決定全市所有學校推遲開學.某區(qū)教育局為了讓學生停課不停學,要求學校各科老師每天在網(wǎng)上授課輔導,每天共200分鐘.教育局為了了解高三學生網(wǎng)上學習情況,上課幾天后在全區(qū)高三學生中采取隨機抽樣的方法抽取了80名學生(其中男女生恰好各占一半)進行問卷調(diào)查,按男女生分為兩組,再將每組學生在線學習時間(分鐘)分為5,,,,得到如圖所示的頻率分布直方圖.全區(qū)高三學生有3000人(男女生人數(shù)大致相等),以頻率估計概率回答下列問題:

1)估計全區(qū)高三學生中網(wǎng)上學習時間不超過40分鐘的人數(shù);

2)在調(diào)查的80名高三學生且學習時間不超過40分鐘的學生中,男女生按分層抽樣的方法抽取6.若從這6人中隨機抽取2人進行電話訪談,求至少抽到1名男生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖①,在直角梯形ABCD中,∠ADC=90°,CDAB,ADCDAB=2.將△ADC沿AC折起,使平面ADC⊥平面ABC,得到幾何體DABC,如圖②所示.

(1)證明:平面ABD⊥平面BCD

(2)求二面角DABC的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2022年第24屆冬奧會將在北京舉行。為了推動我國冰雪運動的發(fā)展,京西某區(qū)興建了“騰越冰雪運動基地。通過對來“騰越參加冰雪運動的100員運動員隨機抽樣調(diào)查,他們的身份分布如下: 注:將表中頻率視為概率。

身份

小學生

初中生

高中生

大學生

職工

合計

人數(shù)

40

20

10

20

10

100

對10名高中生又進行了詳細分類如下表:

年級

高一

高二

高三

合計

人數(shù)

4

4

2

10

(1)求來“騰越參加冰雪運動的人員中高中生的概率;

(2)根據(jù)統(tǒng)計,春節(jié)當天來“騰越”參加冰雪運動的人員中,小學生是340人,估計高中生是多少人?

(3)在上表10名高中生中,從高二,高三6名學生中隨機選出2人進行情況調(diào)查,至少有一名高三學生的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】關(guān)于函數(shù),下列說法正確的是(

A.是函數(shù)的零點,則的整數(shù)倍

B.函數(shù)的圖象關(guān)于點對稱

C.函數(shù)的圖象與函數(shù)的圖象相同

D.函數(shù)的圖象可由的圖象先向上平移個單位長度,再向左平移個單位長度得到

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形是正方形,平面,,,,分別為,的中點.

(Ⅰ)求證:平面;

(Ⅱ)求證:平面平面.

查看答案和解析>>

同步練習冊答案