【題目】已知正數(shù)數(shù)列{an}的前n項(xiàng)和為Sn , 點(diǎn)P(an , Sn)在函數(shù)f(x)= x2+ x上,已知b1=1,3bn﹣2bn1=0(n≥2,n∈N*),
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若cn=anbn , 求數(shù)列{cn}的前n項(xiàng)和Tn;
(3)是否存在整數(shù)m,M,使得m<Tn<M對(duì)任意正整數(shù)n恒成立,且M﹣m=9,說明理由.

【答案】
(1)解:∵點(diǎn)P(an,Sn)在函數(shù)f(x)= x2+ x上,

∴Sn= + an,Sn1= + an1(n≥2),

兩式相減,整理得:(an+an1)(an﹣an1﹣1)=0,

又∵an>0,

∴an=an1+1,

又∵S1= + a1,即a1=1,

∴數(shù)列{an}是首項(xiàng)和公差均為1的等差數(shù)列,

∴an=n;


(2)解:∵b1=1,3bn﹣2bn1=0(n≥2,n∈N*),

∴數(shù)列{bn}是首項(xiàng)為1、公比為 的等比數(shù)列,

,

,

Tn= +2× +…+n× ,

兩式相減,得: Tn=1+ + +…+ ﹣n×

= ﹣n×

=3﹣(n+3)× ,

∴Tn=9﹣(3n+9)×


(3)解:結(jié)論:假設(shè)存在整數(shù)m、M,使得m<Tn<M對(duì)任意正整數(shù)n恒成立,且M﹣m=9.

理由如下:

由(2)知:Tn=9﹣(3n+9)× <9,

又∵Tn1=9﹣[3(n﹣1)+9]× ,

∴Tn﹣Tn1=(3n+6)× ﹣(3n+9)× =n× >0,

∴數(shù)列{Tn}是單調(diào)遞增數(shù)列,

∴(Tnmin=T1=9﹣12× =1,

∴1<Tn<9,

∴m=0,M=9,

∴存在整數(shù)m、M,使得m<Tn<M對(duì)任意正整數(shù)n恒成立,且M﹣m=9.


【解析】(1)通過將點(diǎn)P(an , Sn)代入函數(shù)f(x)= x2+ x中,利用Sn= + an與Sn1= + an1(n≥2)作差,進(jìn)而可知數(shù)列{an}是首項(xiàng)和公差均為1的等差數(shù)列,計(jì)算即得結(jié)論;(2)利用錯(cuò)位相減法計(jì)算即得結(jié)論;(3)通過(2)知Tn<9,利用作差法可知數(shù)列{Tn}是單調(diào)遞增數(shù)列,進(jìn)而計(jì)算可得結(jié)論.
【考點(diǎn)精析】關(guān)于本題考查的數(shù)列的前n項(xiàng)和和數(shù)列的通項(xiàng)公式,需要了解數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系;如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐P﹣ABCD中,PA⊥底面ABCD,且PA=AB=AD=CD,AB∥CD,∠ADC=90°.
(1)在側(cè)棱PC上是否存在一點(diǎn)Q,使BQ∥平面PAD?證明你的結(jié)論;
(2)求證:平面PBC⊥平面PCD;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從高三學(xué)生中抽取50名同學(xué)參加數(shù)學(xué)競賽,成績的分組及各組的頻數(shù)如下(單位:分):
[40,50),2;[50,60),3;[60,70),10;[70,80),15;[80,90),12;[90,100),8.
(1)列出樣本的頻率分布表;
(2)畫出頻率分布直方圖和頻率分布折線圖;
(3)估計(jì)成績?cè)赱60,90)分的學(xué)生比例;
(4)估計(jì)成績?cè)?5分以下的學(xué)生比例.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長為a的正方體ABCD﹣A1B1C1D1中,P為A1D1的中點(diǎn),Q為A1B1上任意一點(diǎn),E,F(xiàn)為CD上任意兩點(diǎn),且EF的長為定值b,則下面的四個(gè)值中不為定值的是(

A.點(diǎn)P到平面QEF的距離
B.三棱錐P﹣QEF的體積
C.直線PQ與平面PEF所成的角
D.二面角P﹣EF﹣Q的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司計(jì)劃在今年內(nèi)同時(shí)出售變頻空調(diào)機(jī)和智能洗衣機(jī),由于這兩種產(chǎn)品的市場(chǎng)需求量非常大,有多少就能銷售多少,因此該公司要根據(jù)實(shí)際情況(如資金、勞動(dòng)力)確定產(chǎn)品的月供應(yīng)量,以使得總利潤達(dá)到最大.已知對(duì)這兩種產(chǎn)品有直接限制的因素是資金和勞動(dòng)力,通過調(diào)查,得到關(guān)于這兩種產(chǎn)品的有關(guān)數(shù)據(jù)如表:
試問:怎樣確定兩種貨物的月供應(yīng)量,才能使總利潤達(dá)到最大,最大利潤是多少?

資金

單位產(chǎn)品所需資金(百元)

空調(diào)機(jī)

洗衣機(jī)

月資金供應(yīng)量(百元)

成本

30

20

300

勞動(dòng)力(工資)

5

10

110

單位利潤

6

8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗(yàn)員每隔30 min從該生產(chǎn)線上隨機(jī)抽取一個(gè)零件,并測(cè)量其尺寸(單位:cm).下面是檢驗(yàn)員在一天內(nèi)依次抽取的16個(gè)零件的尺寸:

抽取次序

1

2

3

4

5

6

7

8

零件尺寸

9.95

10.12

9.96

9.96

10.01

9.92

9.98

10.04

抽取次序

9

10

11

12

13

14

15

16

零件尺寸

10.26

9.91

10.13

10.02

9.22

10.04

10.05

9.95

經(jīng)計(jì)算得, , , ,其中為抽取的第個(gè)零件的尺寸,

(1)求 的相關(guān)系數(shù),并回答是否可以認(rèn)為這一天生產(chǎn)的零件尺寸不隨生產(chǎn)過程的進(jìn)行而系統(tǒng)地變大或變。ㄈ,則可以認(rèn)為零件的尺寸不隨生產(chǎn)過程的進(jìn)行而系統(tǒng)地變大或變。

(2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在之外的零件,就認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對(duì)當(dāng)天的生產(chǎn)過程進(jìn)行檢查.

(ⅰ)從這一天抽檢的結(jié)果看,是否需對(duì)當(dāng)天的生產(chǎn)過程進(jìn)行檢查?

(ⅱ)在之外的數(shù)據(jù)稱為離群值,試剔除離群值,估計(jì)這條生產(chǎn)線當(dāng)天生產(chǎn)的零件尺寸的均值與標(biāo)準(zhǔn)差.(精確到0.01)

附:樣本 的相關(guān)系數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱錐S﹣ABC中,AB⊥BC,AB=BC= ,SA=SC=2,二面角S﹣AC﹣B的余弦值是 ,若S、A、B、C都在同一球面上,則該球的表面積是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于給定的正整數(shù)k,若數(shù)列{an}滿足

=2kan對(duì)任意正整數(shù)n(n> k) 總成立,則稱數(shù)列{an} 是“P(k)數(shù)列”.

(1)證明:等差數(shù)列{an}是“P(3)數(shù)列”;

若數(shù)列{an}既是“P(2)數(shù)列”,又是“P(3)數(shù)列”,證明:{an}是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=48x﹣x3 , x∈[﹣3,5]
(1)求單調(diào)區(qū)間;
(2)求最值.

查看答案和解析>>

同步練習(xí)冊(cè)答案