【題目】已知互相垂直的平面α,β交于直線l,若直線m,n滿足m∥α,n⊥β,則( 。
A.m∥l
B.m∥n
C.n⊥l
D.m⊥n
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用0,1,2,3,4這五個(gè)數(shù)字可以組成多少個(gè)無重復(fù)數(shù)字的
(1)四位密碼?
(2)四位數(shù)?
(3)四位奇數(shù)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】動(dòng)圓過點(diǎn)(1,0),且與直線x=-1相切,則動(dòng)圓的圓心的軌跡方程為_____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(2x+1)ex , f′(x)為f(x)的導(dǎo)函數(shù),則f′(0)的值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解高中生作文成績與課外閱讀量之間的關(guān)系,某研究機(jī)構(gòu)隨機(jī)抽取了60名高中生,通過問卷調(diào)查,得到以下數(shù)據(jù):
作文成績優(yōu)秀 | 作文成績一般 | 總計(jì) | |
課外閱讀量較大 | 22 | 10 | 32 |
課外閱讀量一般 | 8 | 20 | 28 |
總計(jì) | 30 | 30 | 60 |
由以上數(shù)據(jù),計(jì)算得到K2的觀測值k≈9.643,根據(jù)臨界值表,以下說法正確的是( )
A. 沒有充足的理由認(rèn)為課外閱讀量大與作文成績優(yōu)秀有關(guān)
B. 有0.5%的把握認(rèn)為課外閱讀量大與作文成績優(yōu)秀有關(guān)
C. 有99.9%的把握認(rèn)為課外閱讀量大與作文成績優(yōu)秀有關(guān)
D. 有99.5%的把握認(rèn)為課外閱讀量大與作文成績優(yōu)秀有關(guān)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面的表述:
①6=p; ②a=3×5+2; ③b+3=5; ④p=((3x+2)-4)x+3;
⑤a=a3; ⑥x,y,z=5; ⑦ab=3; ⑧x=y(tǒng)+2+x.
其中是賦值語句的序號(hào)有________.(注:要求把正確的表述全填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若圖象過點(diǎn)(1,0)的二次函數(shù)f(x)=ax2-4x+c的值域?yàn)?/span>[0,+∞),則a=__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班主任對(duì)全班50名學(xué)生作了一次調(diào)查,所得數(shù)據(jù)如表:
認(rèn)為作業(yè)多 | 認(rèn)為作業(yè)不多 | 總計(jì) | |
喜歡玩電腦游戲 | 18 | 9 | 27 |
不喜歡玩電腦游戲 | 8 | 15 | 23 |
總計(jì) | 26 | 24 | 50 |
由表中數(shù)據(jù)計(jì)算得到K2的觀測值k≈5.059,于是________(填“能”或“不能”)在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為喜歡玩電腦游戲與認(rèn)為作業(yè)多有關(guān).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=loga|x|在(-∞,0)上單調(diào)遞增,則f(a+1)與f(2)的大小關(guān)系是__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com