已知函數(shù)f(x)是奇函數(shù),且當(dāng)x>0時(shí),f(x)=x3+2x2-1,求f(x)在R上的表達(dá)式.

解:題目已經(jīng)給出x>0時(shí)的解析式,只要求出x<0和x=0時(shí)的解析式就可以了.f(x)=x3+2x2-1.

∵f(x)為奇函數(shù),∴f(0)=0.?

設(shè)x<0,則-x>0,f(-x)=(-x)3+2(-x)2-1=-x3+2x2-1.

又根據(jù)f(x)為奇函數(shù),∴有f(-x)=-f(x).

∴-f(x)=-x3+2x2-1.?

∴f(x)=x3-2x2+1.?

因此,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是奇函數(shù),且在區(qū)間[1,2]上單調(diào)遞減,則f(x)在區(qū)間[-2,-1]上是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是奇函數(shù),函數(shù)g(x)=f(x-2)+3,那么g(x)的圖象的對(duì)稱中心的坐標(biāo)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是奇函數(shù),且當(dāng)x≥0時(shí),f(x)=ln(x+1),則當(dāng)x<0時(shí),f(x)的解析式為
f(x)=-ln(-x+1)
f(x)=-ln(-x+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是奇函數(shù),且當(dāng)x>0時(shí),f(x)=x3+2x+1,則當(dāng)x<0時(shí),f(x)的解析式為
f(x)=x3+2x-1
f(x)=x3+2x-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是奇函數(shù),f(x)的定義域?yàn)椋?∞,+∞).當(dāng)x<0時(shí),f(x)=
ln(-ex)
x
.這里,e為自然對(duì)數(shù)的底數(shù).
(1)若函數(shù)f(x)在區(qū)間(a,a+
1
3
)(a>0)
上存在極值點(diǎn),求實(shí)數(shù)a的取值范圍;
(2)如果當(dāng)x≥1時(shí),不等式f(x)≥
k
x+1
恒成立,求實(shí)數(shù)k的取值范圍;
(3)試判斷 ln
1
n+1
2(
1
2
+
2
3
+…+
n
n+1
)-n
的大小關(guān)系,這里n∈N*,并加以證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案