已知首項(xiàng)不為零的數(shù)列{an}的前n項(xiàng)和為Sn,若對任意的r、t∈N*,都有.
(1)判斷{an}是否為等差數(shù)列,并證明你的結(jié)論;
(2)若a1=1,b1=3,數(shù)列{bn}的第n項(xiàng)bn是數(shù)列{an}的第bn-1項(xiàng)(n≥2),求bn.
(3)求和Tn=a1b1+a2b2+…+anbn.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
Sr |
St |
r |
t |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年新建二中六模) 已知首項(xiàng)不為零的數(shù)列、
(I)判斷是否為等差數(shù)列,并證明你的結(jié)論.
(II)若
(III)求和
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年浙江省慈溪中學(xué)高一下學(xué)期期中考試數(shù)學(xué)(1-4班) 題型:解答題
已知首項(xiàng)不為零的數(shù)列的前n項(xiàng)和為,若對任意的r、s,都有.
(1)判斷是否為等差數(shù)列,并證明你的結(jié)論;
(2)若,數(shù)列的第n項(xiàng)是數(shù)列的第項(xiàng),求;
(3)求和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:湖南省高考適應(yīng)性測試數(shù)學(xué)(文) 題型:解答題
(本小題滿分13分)
已知首項(xiàng)不為零的數(shù)列的前項(xiàng)和為,若對任意的,,都有.
(Ⅰ)判斷數(shù)列是否為等差數(shù)列,并證明你的結(jié)論;
(Ⅱ)若數(shù)列的第項(xiàng)是數(shù)列的第項(xiàng),且,,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年浙江省高一下學(xué)期期中考試數(shù)學(xué)(1-4班) 題型:解答題
已知首項(xiàng)不為零的數(shù)列的前n項(xiàng)和為,若對任意的r、s,都有.
(1)判斷是否為等差數(shù)列,并證明你的結(jié)論;
(2)若,數(shù)列的第n項(xiàng)是數(shù)列的第項(xiàng),求;
(3)求和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com