【題目】如圖,四棱錐中,平面底面ABCD,是等邊三角形,底面ABCD為梯形,且,,.
Ⅰ證明:;
Ⅱ求A到平面PBD的距離.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)求函數(shù) 的單調(diào)區(qū)間;
(2)若在 上只有一個(gè)零點(diǎn),求的取值范圍;
(3)設(shè) 為函數(shù)的極小值點(diǎn),證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1為某省2018年1~4月快遞業(yè)務(wù)量統(tǒng)計(jì)圖,圖2是該省2018年1~4月快遞業(yè)務(wù)收入統(tǒng)計(jì)圖,下列對統(tǒng)計(jì)圖理解錯(cuò)誤的是( )
A. 2018年1~4月的業(yè)務(wù)量,3月最高,2月最低,差值接近2000萬件
B. 2018年1~4月的業(yè)務(wù)量同比增長率均超過50%,在3月底最高
C. 從兩圖來看,2018年1~4月中的同一個(gè)月的快遞業(yè)務(wù)量與收入的同比增長率并不完全一致
D. 從1~4月來看,該省在2018年快遞業(yè)務(wù)收入同比增長率逐月增長
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甜皮鴨,樂山人稱鹵鴨子,也稱嘉州甜皮鴨,是樂山著名美食,起源于樂山市夾江縣木城古鎮(zhèn),每年吸引成千上萬的外地人前來品嘗.某商家生產(chǎn)鹵鴨子,每公斤鴨子的成本為元,加工費(fèi)為元(為常數(shù)),且,設(shè)該商家每公斤鹵鴨子的售價(jià)為元(),日銷售量(單位:公斤),且(為自然對數(shù)的底數(shù)).根據(jù)市場調(diào)查,當(dāng)每公斤鹵鴨子的出售價(jià)為元時(shí),日銷售量為公斤.
(1)求該商家的每日利潤元與每公斤鹵鴨子的出售價(jià)元的函數(shù)關(guān)系式;
(2)若,當(dāng)每公斤鹵鴨子的出售價(jià)為多少元時(shí),該商家的利潤最大,并求出利潤的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在棱長均為的四面體中,點(diǎn)為的中點(diǎn),點(diǎn)為的中點(diǎn).若點(diǎn),是平面內(nèi)的兩動點(diǎn),且,,則的面積為( )
A. B. 3
C. D. 2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求的極坐標(biāo)方程;
(2)若曲線的極坐標(biāo)方程為,直線與在第一象限的交點(diǎn)為,與的交點(diǎn)為(異于原點(diǎn)),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國共產(chǎn)黨第十九次全國代表大會于2017年10月18日至10月24日在北京召開,會議提出“決勝全面建成小康社會”.某市積極響應(yīng)開展“脫貧攻堅(jiān)”,為2020年“全面建成小康社會”貢獻(xiàn)力量.為了解該市農(nóng)村“脫貧攻堅(jiān)”情況,從某縣調(diào)查得到農(nóng)村居民2013年至2017年家庭人均純收入(單位:百元)的數(shù)據(jù)如表:
年 份 | 2013 | 2014 | 2015 | 2016 | 2017 |
年人均純收入百元 | 47 | 55 | 61 | 65 | 72 |
注:小康的標(biāo)準(zhǔn)是農(nóng)村居民家庭年人均純收入達(dá)到8000元.
(1)求關(guān)于的線性回歸方程;
(2)利用(1)中的回歸方程,預(yù)測2020年該縣農(nóng)村居民家庭年人均純收入指標(biāo)能否達(dá)到“全面建成小康社會”的標(biāo)準(zhǔn)?
附:回歸直線 斜率和截距的最小二乘估計(jì)公式分別為:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com