“非p為假命”是“p且q是真命題”的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也木必要條件
考點:必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:根據(jù)p且q是真命題,得出p,q都為真命題,利用非p為假命題,得出p為真命題,再根據(jù)充分必要條件的定義可判斷.
解答: 解:∵非p為假命題,
∴p為真命題,
∵p且q是真命題,
∴p,q都為真命題,
∴根據(jù)充分必要條件的定義可判斷:
“非p為假命”是“p且q是真命題”的必要不充分條件.
故選:B
點評:本題考查了命題的真假問題,充分必要條件,屬于中檔題,難度不大.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
a
b
+
1
2
,其中
a
=(
3
sinx-cosx,-1),
b
=(cosx,1).
(Ⅰ)求函數(shù)f(x)的最大值和最小正周期;
(Ⅱ)設△ABC的內(nèi)角A、B、C的對邊分別為a,b,c,且c=3,f(C)=0,若sin(A+C)=2sinA,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點A(4,m)在拋物線y2=2px(p>0)上,它到拋物線焦點F的距離為5,
(Ⅰ)求拋物線方程和m的值;
(Ⅱ)若m>0,直線L過點A作與拋物線只有一個公共點,求直線L方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x3
3
+
x2
4
,g(n)=(
1
2
n,(n∈N*),若f′(x)≥g(n)當x∈(-∞,λ]時恒成立.
(Ⅰ)當n=1時,求不等式f′(x)≥g(n)的解集;
(Ⅱ)求實常數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平行四邊形ABCD的邊BC、CD的中點分別是M、N,設
AM
=
a
,
AN
=
b
,試用
a
,
b
表示
AB
,
BC

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=x3-bx+1有且僅有兩個不同零點,則b的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

關于直線的傾斜角與斜率,下列說法正確的是( 。
A、所有的直線都有傾斜角和斜率
B、所有的直線都有傾斜角,但不一定都有斜率
C、直線的傾斜角和斜率有時都不存在
D、所有的直線都有斜率,但不一定有傾斜角

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,0<φ<
π
2
)的圖象與x軸的交點中,相鄰兩個交點之間的距離為
π
2
,且圖象上一個最高點M(
π
6
,2).
(1)求f(x)的解析式;
(2)求f(x)的單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)F(x)=Acos(ωx+φ)+B(ω>0,A>0,|φ|<
π
2
),一部分圖象如圖,若f(x)=F(x-
π
6

(Ⅰ)求f(x)解析式;
(Ⅱ)當0<x<1時,求證f(x)>1-2x2;
(Ⅲ)若g(x)=sinx,問是否存在實數(shù)a和正整數(shù)n,使φ(x)=ag(x)+f(x)在(0,nπ)內(nèi)恰有2019個零點,若存在,求a,n值,若不存在,說明理由.

查看答案和解析>>

同步練習冊答案