已知角α的終邊經(jīng)過點P(-3,4),求角α的正弦、余弦、正切函數(shù)值.
考點:任意角的三角函數(shù)的定義
專題:計算題,三角函數(shù)的求值
分析:由題意可得OP=
x2+y2
=5,利用任意角的三角函數(shù)的定義,求出結果.
解答: 解:由題意可得  x=-3,y=4,
∴r=OP=
x2+y2
=5,
∴sinα=
y
r
=
4
5
,
cosα=
x
r
=-
3
5
,tanα=
y
x
=-
4
3

角α的正弦、余弦、正切函數(shù)值:
4
5
;-
3
5
;-
4
3
點評:本題考查任意角的三角函數(shù)的定義,兩點間的距離公式的應用,熟記三角函數(shù)的定義是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

圓心C在直線l:x+2y=0,圓C過點A(2,-3),且截直線m:x-y-1=0所得弦長為2
2
,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sinα=
5
5
,且α是第一象限角.
(1)求cosα的值;
(2)求tan(α+π)+
sin(
2
-α)
cos(π-α)
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線C:y2=12x,點M(a,0),過M的直線l交拋物線C于A,B兩點.
(Ⅰ)若a=1,拋物線C的焦點與AB中點的連線垂直于x軸,求直線l的方程;
(Ⅱ)設a為小于零的常數(shù),點A關于x軸的對稱點為A′,求證:直線A′B過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,長方體ABCD-A1B1C1D1中,E為線段BC的中點,AB=1,AD=2,AA1=
2

(Ⅰ)證明:DE⊥平面A1AE;
(Ⅱ)求點A到平面A1ED的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:實數(shù)x∈{x|a-4<x<a+4},命題q:實數(shù)x∈{x|x2-4x+3<0},且p是q的必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果一條拋物線y=ax2+bx+c(a≠0)與x軸有兩個交點,那么以該拋物線的頂點和這兩個交點為頂點的三角形稱為這條拋物線的“拋物線三角形”.
(Ⅰ)“拋物線三角形”一定是
 
三角形(提示:在答題卡上作答);
(Ⅱ)若拋物線m:y=a(x-2)2+b(a>0,b<0)的“拋物線三角形”是直角三角形,求a,b滿足的關系式;
(Ⅲ)如圖,△OAB是拋物線n:y=-x2+tx(t>0)的“拋物線三角形”,是
否存在以原點O為對稱中心的矩形ABCD?若存在,求出過O、C、D三點的拋物線的表達式;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有4個紅球和6個白球,每個球都可以區(qū)分,從中取出4個,
(1)取出紅球比白球多的取法有多少種?
(2)假設取到一個紅球得2分,取到一個白球得1分,那么4個球的總分不少于5分的取法有多少種?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知線段AB、BD在平面α內,BD⊥AB,線段AC⊥α,如果AB=2,BD=5,AC=4,則C、D間的距離為
 

查看答案和解析>>

同步練習冊答案