(2005•海淀區(qū)二模)復數(shù)z1=(
1-i
1+i
)2,z2=2-i3
分別對應復平面上的點P、Q,則向量
PQ
對應的復數(shù)是( 。
分析:利用復數(shù)的乘除運算化簡復數(shù),求出對應的點,得到向量
PQ
的坐標,則答案可求.
解答:解:由z1=(
1-i
1+i
)2=[
(1-i)2
(1+i)(1-i)
]2=(
-2i
2
)2=-1

z2=2-i3=2+i
∴P(-1,0),Q(2,1),
PQ
=(3,1)

∴向量
PQ
對應的復數(shù)是3+i.
故選D.
點評:本題考查了復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)的袋鼠表示法與幾何意義,是基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2005•海淀區(qū)二模)已知函數(shù)f(x)=x•sinx,x∈R,則f(-
π
4
),f(1)
f(
π
3
)
的大小關(guān)系是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2005•海淀區(qū)二模)已知集合M={x||x-1|≤1},Z為整數(shù)集,則M∩Z為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2005•海淀區(qū)二模)設(shè)l1,l2表示兩條直線,α表示平面.若有:(1)l1⊥l2;(2)l1⊥α;(3)l2?α,則以其中兩個為條件,另一個為結(jié)論,可以構(gòu)造的所有命題中,正確命題的個數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2005•海淀區(qū)二模)設(shè)拋物線y2=4(x+1)的準線為l,直線y=x與該拋物線相交于A、B兩點,則點A及點B到準線l的距離之和為( 。

查看答案和解析>>

同步練習冊答案