已知f(x)是R上的奇函數(shù),且滿足f(x+2)=-f(x),當(dāng)x∈(0,2)時,f(x)=3x,則f(1)+f(2)+f(3)+…+f(2013)=________.

解:由題意可得f(x+4)=f[(x+2)+2]=-f(x+2)=f(x),
故函數(shù)f(x)的周期T=4,又函數(shù)為奇函數(shù),故有f(x)=f(-x),
令x=0可得f(0)=0,再把x=0代入原式可得f(2)=-f(0)=0,
而f(1)=31=3,f(3)=f(-1)=-f(1)=-3,
f(4)=f(0)=0,故f(1)+f(2)+f(3)+f(4)=0,
故f(1)+f(2)+f(3)+…+f(2013)=0×503+f(2013)=f(1)=3
故答案為:3
分析:由題意可得函數(shù)周期T=4,再由奇函數(shù)的性質(zhì)綜合可得f(1)+f(2)+f(3)+f(4)=0,而所求結(jié)果為0×503+f(2013)=f(1),進而可得答案.
點評:本題考查函數(shù)的周期性和奇偶性的判斷,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

14、已知f(x)是R上的偶函數(shù),f(2)=-1,若f(x)的圖象向右平移1個單位長度,得到一個奇函數(shù)的圖象,則f(1)+f(2)+f(3)+…+f(2010)=
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是R上的偶函數(shù),當(dāng)x≥0時,f(x)=2x,又a是g(x)=ln(x+1)-
2x
的零點,比較f(a),f(-2),f(1.5)的大小,用小于符號連接為
f(1.5)<f(a)<f(-2).
f(1.5)<f(a)<f(-2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是R上的偶函數(shù),當(dāng)x≥0時,f(x)=
x

(1)求當(dāng)x<0時,f(x)的表達式
(2)判斷f(x)在區(qū)間(0,+∞)的單調(diào)性,并用定義加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是R上的偶函數(shù),g(x)是R上的奇函數(shù),且g(x)=f(x-1),若g(-1)=2,則f(2008)的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知下列四個命題:
①命題“已知f(x)是R上的減函數(shù),若a+b≥0,則f(a)+f(b)≤f(-a)+f(-b)”的逆否命題為真命題;
②若p或q為真命題,則p、q均為真命題;
③若命題p:?x∈R,x2-x+1<0,則?p:?x∈R,x2-x+1≥0;
④“sinx=
1
2
”是“x=
π
6
”的充分不必要條件.
其中正確的是( 。

查看答案和解析>>

同步練習(xí)冊答案