給定橢圓C:,若橢圓C的一個焦點(diǎn)為F(,0),其短軸上的一個端點(diǎn)到F的距離為
(I)求橢圓C的方程;
(II)已知斜率為k(k≠0)的直線l與橢圓C交于不同的兩點(diǎn)A,B,點(diǎn)Q滿足=0,其中N為橢圓的下頂點(diǎn),求直線在y軸上截距的取值范圍.
(I).(II).(III)直線縱截距的范圍是.

試題分析:(I)由題意聯(lián)立方程組
,
根據(jù),即可得到的取值范圍是.
(II)設(shè)直線方程為,
通過聯(lián)立 
設(shè)應(yīng)用韋達(dá)定理,結(jié)合的中點(diǎn),,
得到,可建立的方程, 從而由得到使問題得解.
試題解析:(I)由題意知.

所以,解得,
所以求的取值范圍是.
(II)設(shè)直線方程為,
整理得
化簡得
設(shè)

的中點(diǎn),所以
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032536449737.png" style="vertical-align:middle;" />,所以
,化簡得
,
所以
,所以
.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為,且過點(diǎn),點(diǎn)A、B分別是橢圓C長軸的左、右端點(diǎn),點(diǎn)F是橢圓的右焦點(diǎn),點(diǎn)P在橢圓上,且位于軸上方,.

(1)求橢圓C的方程;
(2)求點(diǎn)P的坐標(biāo);
(3)設(shè)M是直角三角PAF的外接圓圓心,求橢圓C上的點(diǎn)到點(diǎn)M的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知兩點(diǎn),直線AM、BM相交于點(diǎn)M,且這兩條直線的斜率之積為.
(Ⅰ)求點(diǎn)M的軌跡方程;
(Ⅱ)記點(diǎn)M的軌跡為曲線C,曲線C上在第一象限的點(diǎn)P的橫坐標(biāo)為1,直線PE、PF與圓)相切于點(diǎn)E、F,又PE、PF與曲線C的另一交點(diǎn)分別為Q、R.
求△OQR的面積的最大值(其中點(diǎn)O為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓,橢圓的長軸為短軸,且與有相同的離心率.
(1)求橢圓的方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)A,B分別在橢圓上, ,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點(diǎn),動點(diǎn)G滿足
(Ⅰ)求動點(diǎn)G的軌跡的方程;
(Ⅱ)已知過點(diǎn)且與軸不垂直的直線l交(Ⅰ)中的軌跡于P,Q兩點(diǎn).在線段上是否存在點(diǎn),使得以MP,MQ為鄰邊的平行四邊形是菱形?若存在,求實(shí)數(shù)m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知動圓過定點(diǎn)P(1,0),且與定直線l:x=-1相切,點(diǎn)C在l上.
(1)求動圓圓心的軌跡M的方程;
(2)設(shè)過點(diǎn)P,且斜率為-的直線與曲線M相交于A、B兩點(diǎn). 問:△ABC能否為正三角形?若能,求點(diǎn)C的坐標(biāo);若不能,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知圓的圓心為拋物線的焦點(diǎn),直線與圓相切,則該圓的方程為(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知過拋物線焦點(diǎn)的直線與拋物線相交于兩點(diǎn),若,則    .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓E:,橢圓E的內(nèi)接平行四邊形的一組對邊分別經(jīng)過它的兩個焦點(diǎn)(如圖),則這個平行四邊形面積的最大值是   

查看答案和解析>>

同步練習(xí)冊答案