【題目】某公司為了確定下一年度投入某種產品的宣傳費用,需了解年宣傳費(單位:萬元)對年銷量(單位:噸)和年利潤(單位:萬元)的影響.對近6年宣傳費和年銷量的數據做了初步統計,得到如下數據:
年份 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年宣傳費x(萬元) | 38 | 48 | 58 | 68 | 78 | 88 |
年銷售量y(噸) | 16.8 | 18.8 | 20.7 | 22.4 | 24.0 | 25.5 |
經電腦模擬,發(fā)現年宣傳費(萬元)與年銷售量(噸)之間近似滿足關系式即,對上述數據作了初步處理,得到相關的值如下表:
75.3 | 24.6 | 18.3 | 101.4 |
(Ⅰ)從表中所給出的6年年銷售量數據中任選2年做年銷售量的調研,求所選數據中至多有一年年銷售量低于20噸的概率.
(Ⅱ)根據所給數據,求關于的回歸方程;
(Ⅲ)若生產該產品的固定成本為200(萬元),且每生產1(噸)產品的生產成本為20(萬元)(總成本=固定成本+生產成本+年宣傳費),銷售收入為(萬元),假定該產品產銷平衡(即生產的產品都能賣掉),2019年該公司計劃投入萬元宣傳費,你認為該決策合理嗎?請說明理由.(其中為自然對數的底數,)
附:對于一組數據,其回歸直線中的斜率和截距的最小二乘估計分別為.
【答案】(Ⅰ)(Ⅱ)(Ⅲ)不合理
【解析】
(Ⅰ)利用組合知識,根據古典概型概率公式可得結果;(Ⅱ)對兩邊取對數得,令得,根據所給的數據,求出變量的平均數,求出最小二乘法所需要的數據,可得線性回歸方程的系數,再根據樣本中心點一定在線性回歸方程上,求出的值,寫出線性回歸方程;(Ⅲ)設該公司的年利潤為,由利潤=銷售收入-總成本,求得的解析式,由二次函數的性質求得時,取最大值,從而可得結果.
(Ⅰ)記事件A表示“至多有一年年銷量低于20噸”,由表中數據可知6年中有2年的年銷量低于20噸,故
(Ⅱ)對兩邊取對數得,令得,由題中數據得:,,
,,
所以,由,
得,故所求回歸方程為.
(Ⅲ)設該公司的年利潤為,因為利潤=銷售收入-總成本,所以由題意可知
,
當即時,利潤取得最大值500(萬元),故2019年該公司計劃投入萬元宣傳費的決策不合理.
科目:高中數學 來源: 題型:
【題目】某學生參加4門學科的學業(yè)水平測試,每門得等級的概率都是,該學生各學科等級成績彼此獨立.規(guī)定:有一門學科獲等級加1分,有兩門學科獲等級加2分,有三門學科獲等級加3分,四門學科全獲等級則加5分,記表示該生的加分數, 表示該生獲等級的學科門數與未獲等級學科門數的差的絕對值.
(1)求的數學期望;
(2)求的分布列.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知集合A={x|2-a≤x≤2+a},B={x|x≤1或x≥4}.
(1)當a=3時,求A∩B;
(2)若a>0,且A∩B=,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】兩地相距150千米,某人開汽車以60千米/小時的速度從地到達地,在地停留1小時后再以50千米/小時的速度返回地.
(1)試把汽車離開地的距離(千米)表示為時間(小時)的函數;
(2)根據(1)中的函數表達式,求出汽車距離A地100千米時的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,游客從某旅游景區(qū)的景點處下山至處有兩種路徑,一種是從沿直線步行到,另一種是先從沿索道乘纜車到,然后從沿直線步行到.現有甲、乙兩位游客從處下山,甲沿勻速步行,速度為.在甲出發(fā)后,乙從乘纜車到,在處停留后,再從勻速步行到.假設纜車勻速直線運動的速度為,山路長為,經測量,,.
(1)求索道的長;
(2)為使兩位游客在處互相等待的時間不超過3分鐘,乙步行的速度應該控制在什么范圍內?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法正確的是( )
①設某大學的女生體重與身高具有線性相關關系,根據一組樣本數據,用最小二乘法建立的線性回歸方程為 ,則若該大學某女生身高增加,則其體重約增加;
②關于的方程的兩根可分別作為橢圓和雙曲線的離心率;
③過定圓上一定點作圓的動弦,為原點,若,則動點的軌跡為橢圓;
④已知是橢圓的左焦點,設動點在橢圓上,若直線的斜率大于,則直線(為原點)的斜率的取值范圍是.
A. ①②③ B. ①③④ C. ①②④ D. ②③④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,直線的參數方程為(為參數),以坐標原點為極點,以軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,直線與曲線交于兩點.
(1)求直線的普通方程和曲線的直角坐標方程;
(2)若點的極坐標為,求的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某產品生產廠家生產一種產品,每生產這種產品 (百臺),其總成本為萬元,其中固定成本為42萬元,且每生產1百臺的生產成本為15萬元總成本固定成本生產成本銷售收入萬元滿足,假定該產品產銷平衡即生產的產品都能賣掉,根據上述條件,完成下列問題:
寫出總利潤函數的解析式利潤銷售收入總成本;
要使工廠有盈利,求產量的范圍;
工廠生產多少臺產品時,可使盈利最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某單位有員工1000名,平均每人每年創(chuàng)造利潤10萬元.為增加企業(yè)競爭力,決定優(yōu)化產業(yè)結構,調整出名員工從事第三產業(yè),調整后平均每人每年創(chuàng)造利潤為萬元,剩下的員工平均每人每年創(chuàng)造的利潤可以提高.
(1)若要保證剩余員工創(chuàng)造的年總利潤不低于原來1000名員工創(chuàng)造的年總利潤,則最多調整出多少名員工從事第三產業(yè)?
(2)若要保證剩余員工創(chuàng)造的年總利潤不低于原來1000名員工創(chuàng)造的年總利潤條件下,若要求調整出的員工創(chuàng)造出的年總利潤始終不高于剩余員工創(chuàng)造的年總利潤,則的取值范圍是多少?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com