【題目】下列四個命題中錯誤的是(
A.在一次試卷分析中,從每個考室中抽取第5號考生的成績進行統(tǒng)計,不是簡單隨機抽樣
B.對一個樣本容量為100的數(shù)據(jù)分組,各組的頻數(shù)如下:

區(qū)間

[17,19)

[19,21)

[21,23)

[23,25)

[25,27)

[27,29)

[29,31)

[31,33]

頻數(shù)

1

1

3

3

18

16

28

30

估計小于29的數(shù)據(jù)大約占總體的58%
C.設(shè)產(chǎn)品產(chǎn)量與產(chǎn)品質(zhì)量之間的線性相關(guān)系數(shù)為﹣0.91,這說明二者存在著高度相關(guān)
D.通過隨機詢問110名性別不同的行人,對過馬路是愿意走斑馬線還是愿意走人行天橋進行抽樣調(diào)查,得到如表列聯(lián)表:

總計

走天橋

40

20

60

走斑馬線

20

30

50

總計

60

50

110

,則有99%以上的把握認為“選擇過馬路方式與性別有關(guān)”

【答案】B
【解析】解:對于A,系統(tǒng)抽樣的特點是從比較多比較均衡的個體中抽取一定的樣本,并且抽取的樣本具有一定的規(guī)律性,在一次試卷分析中,從每個試室中抽取第5號考生的成績進行統(tǒng)計,這是一個系統(tǒng)抽樣,故正確; 對于B,估計小于29的數(shù)據(jù)大約占總體的52%,錯誤;
對于C,∵相關(guān)系數(shù)的絕對值越大,越具有強大相關(guān)性,∴正確
對于D,由題意,K2≈7.8
∵7.8>6.635,
∴有0.01=1%的機會錯誤,
即有99%以上的把握認為“選擇過馬路的方式與性別有關(guān)”,正確.
故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知復(fù)數(shù)z=bi(b∈R), 是實數(shù),i是虛數(shù)單位.
(1)求復(fù)數(shù)z;
(2)若復(fù)數(shù)(m+z)2所表示的點在第一象限,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若三棱錐P﹣ABC中,AB=AC=1,AB⊥AC,PA⊥平面ABC,且直線PA與平面PBC所成角的正切值為 ,則三棱錐P﹣ABC的外接球的表面積為( )
A.4π
B.8π
C.16π
D.32π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=ax2+bx(a>0,b>0)在點(1,f(1))處的切線斜率為2,則 的最小值是(
A.10
B.9
C.8
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方體上任意選擇4個頂點,它們可能是如下各種幾何形體的4個頂點,這些幾何形體是(寫出所有正確結(jié)論的編號).
①矩形;
②不是矩形的平行四邊形;
③有三個面為等腰直角三角形,有一個面為等邊三角形的四面體;
④每個面都是等邊三角形的四面體;
⑤每個面都是直角三角形的四面體.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為2a的正方形ABCD中,E,F(xiàn)分別為AB,BC的中點,沿圖中虛線將3個三角形折起,使點A,B,C重合,重合后記為點P.

問:
(1)折起后形成的幾何體是什么幾何體?
(2)這個幾何體共有幾個面,每個面的三角形有何特點?
(3)每個面的三角形面積為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=ex﹣ax﹣1.
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)若f(x)在定義域R內(nèi)單調(diào)遞增,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)的右焦點為F2(1,0),點P(1, )在橢圓C上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過坐標原點O的兩條直線EF,MN分別與橢圓C交于E,F(xiàn),M,N四點,且直線OE,OM的斜率之積為﹣ ,求證:四邊形EMFN的面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , a1=a, ,an+2=an+1﹣an , S56=6,則a=

查看答案和解析>>

同步練習(xí)冊答案