已知數(shù)列{an},定義其倒均數(shù)是數(shù)學(xué)公式,若數(shù)列{an}的倒均數(shù)是數(shù)學(xué)公式,則數(shù)列{an}的通項(xiàng)公式an=________.


分析:根據(jù)題中已知條件將兩式聯(lián)立便可求出的表達(dá)式,進(jìn)而可以求出數(shù)列{an}的通項(xiàng)公式.
解答:由題意可知: ①,
②,
①②聯(lián)立可得:+=,
由等差數(shù)列前n 項(xiàng)的和可知:=n,
∴數(shù)列{an}的通項(xiàng)公式為an=,
故答案為:
點(diǎn)評(píng):本題考查了等差數(shù)列的基本知識(shí),考查了學(xué)生的計(jì)算能力,解題時(shí)要認(rèn)真審題,仔細(xì)解答,避免錯(cuò)誤,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:在數(shù)列{an}中,an>0且an≠1,若
a
an+1
n
為定值,則稱(chēng)數(shù)列{an}為“等冪數(shù)列”.已知數(shù)列{an}為“等冪數(shù)列”,且a1=2,a2=4,Sn為數(shù)列{an}的前n項(xiàng)和,則S2009=( 。
A、6026B、6024
C、2D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:在數(shù)列{an}中,an>0且an≠1,若anan+1為定值,則稱(chēng)數(shù)列{an}為“等冪數(shù)列”.已知數(shù)列{an}為“等冪數(shù)列”,且a1=2,a2=4,Sn為數(shù)列{an}的前n項(xiàng)和,則S2013等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an},若點(diǎn)(n,an)(n∈N*)在經(jīng)過(guò)點(diǎn)(8,4)的定直線l上,則數(shù)列{an}的前15項(xiàng)和S15=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•河南模擬)已知數(shù)列{an},若點(diǎn)(n,an)(n∈N+)在經(jīng)過(guò)點(diǎn)(5,3)的定直線l上,則數(shù)列{an}的前9項(xiàng)和S9=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

A、B是函數(shù)f(x)=
1
2
+log2
x
1-x
的圖象上的任意兩點(diǎn),且
OM
=
1
2
OA
+
OB
),已知點(diǎn)M的橫坐標(biāo)為
1
2

(Ⅰ)求證:M點(diǎn)的縱坐標(biāo)為定值;
(Ⅱ)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
),n∈N+且n≥2,求Sn
(Ⅲ)已知數(shù)列{an}的通項(xiàng)公式為an=
2
3
(n=1)
1
(Sn+1)(Sn+1+1)
(n≥2,n∈N+)
.Tn為其前n項(xiàng)的和,若Tn<λ(Sn+1+1),對(duì)一切正整數(shù)都成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案