【題目】分別求適合下列條件的雙曲線的標(biāo)準(zhǔn)方程

焦點(diǎn)在軸上,焦距是,離心率

一個(gè)焦點(diǎn)為的等軸雙曲線

【答案】;

【解析】

試題分析:焦點(diǎn)在軸上的雙曲線的標(biāo)準(zhǔn)方程為,焦距為,離心率,若焦距是,則,離心率,則,由因?yàn)殡p曲線方程中,所以,所以所求雙曲線的標(biāo)準(zhǔn)方程為;由雙曲線的一個(gè)焦點(diǎn)為可知,雙曲線的焦點(diǎn)在軸上,,又由等軸雙曲線的性質(zhì)可知,所以,所以,因此所求的雙曲線的標(biāo)準(zhǔn)方程為本題主要考查求雙曲線的標(biāo)準(zhǔn)方程,根據(jù)待定系數(shù)法求的值,然后再根據(jù)焦點(diǎn)的位置就可以寫(xiě)出雙曲線的標(biāo)準(zhǔn)方程

試題解析:由條件可知,又,所以,

故雙曲線的標(biāo)準(zhǔn)方程為5分

設(shè)所求等軸雙曲線:,則,

故雙曲線的標(biāo)準(zhǔn)方程為10分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】紀(jì)念2016年10月1日開(kāi)始上市,通過(guò)市場(chǎng)調(diào)查,得到該紀(jì)念章每1枚的市場(chǎng)價(jià)單位:元)與上市時(shí)間單位:天)的數(shù)據(jù)如下:

市時(shí)間

4

10

36

市場(chǎng)價(jià)

90

51

90

(1)根據(jù)上表數(shù)據(jù),從下列函數(shù)中選取一個(gè)恰當(dāng)?shù)暮瘮?shù)描述該紀(jì)念章的市場(chǎng)價(jià)上市時(shí)間變化關(guān)系并說(shuō)明理由:①;;

(2)利用你選取的函數(shù),求該紀(jì)念章市場(chǎng)價(jià)最低時(shí)的上市天數(shù)及最低的價(jià)格

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】用反證法證明命題 “自然數(shù)a、b c中恰有一個(gè)偶數(shù)”時(shí),需假設(shè)原命題不成立,下列假設(shè)正確的是(

Aa、bc都是奇數(shù) Ba、b c都是偶數(shù)

C.a、b、c中或都是奇數(shù)或至少有兩個(gè)偶數(shù) D.a、b c中至少有兩個(gè)偶數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓.

1求橢圓C的離心率;

2設(shè)O為原點(diǎn),若點(diǎn)A在橢圓上,點(diǎn)B在直線x=4上,且,求直線AB截圓所得弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以下程序運(yùn)行后的輸出結(jié)果為

i=1

WHILE i<8

i=i+2

S=2*i+3

i=i–1

WEND

PRINT S

END

A. 17 B. 19 C. 21 D. 23

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知①正方形的對(duì)角線相等;②平行四邊形的對(duì)角線相等;③正方形是平行四邊形. ①、②、③組合成“三段論”.根據(jù)“三段論”推理出一個(gè)結(jié)論,則這個(gè)結(jié)論是( )

A. 正方形是平行四邊形 B. 平行四邊形的對(duì)角線相等

C. 正方形的對(duì)角線相等 D. 以上均不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為自然對(duì)數(shù)的底數(shù)).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)設(shè)函數(shù),存在實(shí)數(shù),,使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知圓,點(diǎn),是圓上任意一點(diǎn),線段的垂直平分線和半徑相交于.

(1)求動(dòng)點(diǎn)的軌跡的方程;

(2)設(shè)直線與()中軌跡相交于,兩點(diǎn),直線,的斜率分別為,,(其中),的面積為,以,為直徑的圓的面積分別為,,若,恰好構(gòu)成等比數(shù)列,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

2)是否存在實(shí)數(shù),使恒成立,若存在,求出實(shí)數(shù)的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案