【題目】為了解某單位員工的月工資水平,從該單位500位員工中隨機(jī)抽取了50位進(jìn)行調(diào)查,得到如下頻數(shù)分布表和頻率分布直方圖:

月工資

(單位:百元)

[15,25)

[25,35)

[35,45)

[45,55)

[55,65)

[65,75)

男員工數(shù)

1

8

10

6

4

4

女員工數(shù)

4

2

5

4

1

1

(1) 試由上圖估計(jì)該單位員工月平均工資;

(2)現(xiàn)用分層抽樣的方法從月工資在的兩組所調(diào)查的男員工中隨機(jī)選取5人,問各應(yīng)抽取多少人?

(3)若從月工資在兩組所調(diào)查的女員工中隨機(jī)選取2人,試求這2人月工資差不超過1000元的概率.

【答案】(1) 估計(jì)為4300元;(2) 分別抽取3人,2人;(3) .

【解析】試題分析:(1)平均值等于各個(gè)小矩形的面積乘以組中值之和;(2)易得兩層的人數(shù)比為 ,故分別為 人,;(3) 由已知可得從 人選 人有 種,古河條件的有 種,故所求概率為 .

試題解析:

(1)

即該單位員工月平均工資估計(jì)為4300元.

(2)分別抽取3人,2人

(3)由上表可知:月工資在組的有兩名女工,分別記作甲和乙;月工資在組的有四名女工,分別記作A,B,C,D.現(xiàn)在從這6人中隨機(jī)選取2人的基本事件有如下15組:

(甲,乙),(甲,A),(甲,B),(甲,C),(甲,D),

(乙,A),(乙,B),(乙,C),(乙,D),

(A,B),(A,C),(A,D),

(B,C),(B,D),

(C,D)

其中月工資差不超過1000元,即為同一組的有(甲,乙),(A,B),(A,C),(A,D),(B,C),(B,D),(C,D)共7組,

∴所求概率為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,橢圓短軸的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為.

(1)求橢圓的方程式;

(2)已知?jiǎng)又本與橢圓相交于兩點(diǎn).

①若線段中點(diǎn)的橫坐標(biāo)為,求斜率的值;

②已知點(diǎn),求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象過,若有4個(gè)不同的正數(shù)滿足,且,則從這四個(gè)數(shù)中任意選出兩個(gè),它們的和不超過5的概率為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,

其中,若函數(shù),且它的最小正周期為

(普通中學(xué)只做1,2問)

(1)求的值,并求出函數(shù)的單調(diào)遞增區(qū)間;

(2)當(dāng)(其中)時(shí),記函數(shù)的最大值與最小值分

別為,設(shè),求函數(shù)的解

析式;

(3)在第(2)問的前提下,已知函數(shù) ,若對(duì)于任意, ,總存在,使得

成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中常數(shù)

1)當(dāng),求函數(shù)的單調(diào)遞增區(qū)間;

2)設(shè)定義在上的函數(shù)在點(diǎn)處的切線方程為,若內(nèi)恒成立,則稱為函數(shù)類對(duì)稱點(diǎn),當(dāng)時(shí),試問是否存在類對(duì)稱點(diǎn),若存在,請(qǐng)至少求出一個(gè)類對(duì)稱點(diǎn)的橫坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的左、右焦點(diǎn)分別為 ,點(diǎn)在橢圓上.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)是否存在斜率為2的直線,使得當(dāng)直線與橢圓有兩個(gè)不同交點(diǎn)時(shí),能在直線上找到一點(diǎn),在橢圓上找到一點(diǎn),滿足?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸,焦距為2,且長軸長是短軸長的倍.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè),過橢圓左焦點(diǎn)的直線、兩點(diǎn),若對(duì)滿足條件的任意直線,不等式)恒成立,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校100名學(xué)生期中考試數(shù)學(xué)成績的頻率分布直方圖如圖,其中成績分組區(qū)間如下:

組號(hào)

第一組

第二組

第三組

第四組

第五組

分組

[50,60

[60,70

[70,80

[80,90

[90,100]

1)求圖中a的值;

2)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生期中考試數(shù)學(xué)成績的平均分;

3)現(xiàn)用分層抽樣的方法從第3、4、5組中隨機(jī)抽取6名學(xué)生,將該樣本看成一個(gè)總體,從中隨機(jī)抽取2名,求其中恰有1人的分?jǐn)?shù)不低于90分的概率?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠修建一個(gè)長方體無蓋蓄水池,其容積為6400立方米,深度為4米.池底每平方米的造價(jià)為120元,池壁每平方米的造價(jià)為100元.設(shè)池底長方形的長為x米.

(Ⅰ求底面積,并用含x的表達(dá)式表示池壁面積;

(Ⅱ怎樣設(shè)計(jì)水池能使總造價(jià)最低?最低造價(jià)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案