已知橢圓Γ:(a>b>0)經(jīng)過(guò)D(2,0),E(1,)兩點(diǎn).
(1)求橢圓Γ的方程;
(2)若直線(xiàn)與橢圓Γ交于不同兩點(diǎn)A,B,點(diǎn)G是線(xiàn)段AB中點(diǎn),點(diǎn)O是坐標(biāo)原點(diǎn),設(shè)射線(xiàn)OG交Γ于點(diǎn)Q,且.
①證明:
②求△AOB的面積.

(1);(2)

解析試題分析:(1)由已知M是PD的中點(diǎn),利用P點(diǎn)在圓上,可以求出M的點(diǎn)軌跡方程為;(2)點(diǎn)Q在(1)中的橢圓上,G是OQ的中點(diǎn),利用直線(xiàn)與橢圓的關(guān)系及中點(diǎn)坐標(biāo)公式,即可找到k與m的關(guān)系,并進(jìn)一步求出三角形AOB的面積.
試題解析:(1)由題意,得,解得
∴軌跡Γ的方程為;          5分
(2)①令
消去y
          6分
,即  (1)

又由中點(diǎn)坐標(biāo)公式,得
代入橢圓方程,有
化簡(jiǎn)得:  (2)          9分
②由(1)(2)得
  (3)
在△AOB中,  (4)          12分
∴由(2)(3)(4)可得
∴△AOB的面積是              13分
考點(diǎn):動(dòng)點(diǎn)軌跡,直線(xiàn)與橢圓的位置關(guān)系,中點(diǎn)坐標(biāo),平面向量的坐標(biāo)運(yùn)算,三角形的面積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,橢圓的離心率為,軸被曲線(xiàn)截得的線(xiàn)段長(zhǎng)等于的短軸長(zhǎng).軸的交點(diǎn)為,過(guò)坐標(biāo)原點(diǎn)的直線(xiàn)相交于點(diǎn),直線(xiàn)分別與相交于點(diǎn).

(Ⅰ)求的方程;
(Ⅱ)求證:;
(Ⅲ)記的面積分別為,若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓點(diǎn),離心率為,左右焦點(diǎn)分別為
(1)求橢圓的方程;
(2)若直線(xiàn)與橢圓交于兩點(diǎn),與以為直徑的圓交于兩點(diǎn),且滿(mǎn)足,求直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線(xiàn)方程為,過(guò)點(diǎn)作直線(xiàn)與拋物線(xiàn)交于兩點(diǎn),,過(guò)分別作拋物線(xiàn)的切線(xiàn),兩切線(xiàn)的交點(diǎn)為.
(1)求的值;
(2)求點(diǎn)的縱坐標(biāo);
(3)求△面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知曲線(xiàn)C上任意一點(diǎn)P到兩定點(diǎn)F1(-1,0)與F2(1,0)的距離之和為4.
(1)求曲線(xiàn)C的方程;
(2)設(shè)曲線(xiàn)C與x軸負(fù)半軸交點(diǎn)為A,過(guò)點(diǎn)M(-4,0)作斜率為k的直線(xiàn)l交曲線(xiàn)C于B、C兩點(diǎn)(B在M、C之間),N為BC中點(diǎn).
(ⅰ)證明:k·kON為定值;
(ⅱ)是否存在實(shí)數(shù)k,使得F1N⊥AC?如果存在,求直線(xiàn)l的方程,如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的兩個(gè)焦點(diǎn)坐標(biāo)分別是,,并且經(jīng)過(guò)點(diǎn),求它的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知曲線(xiàn)E上任意一點(diǎn)P到兩個(gè)定點(diǎn)F1(-,0)和F2(,0)的距離之和為4.
(1)求曲線(xiàn)E的方程;
(2)設(shè)過(guò)點(diǎn)(0,-2)的直線(xiàn)l與曲線(xiàn)E交于C、D兩點(diǎn),且·=0(O為坐標(biāo)原點(diǎn)),求直線(xiàn)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的一個(gè)焦點(diǎn)為,離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若動(dòng)點(diǎn)為橢圓外一點(diǎn),且點(diǎn)到橢圓的兩條切線(xiàn)相互垂直,求點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

拋物線(xiàn)的焦點(diǎn)為       

查看答案和解析>>

同步練習(xí)冊(cè)答案