已知曲線(xiàn)C的極坐標(biāo)方程是.以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線(xiàn)l的參數(shù)方程是:(是參數(shù)).
(1)將曲線(xiàn)C的極坐標(biāo)方程化為直角坐標(biāo)方程,將直線(xiàn)的參數(shù)方程化為普通方程;
(2)若直線(xiàn)l與曲線(xiàn)C相交于A、B兩點(diǎn),且,試求實(shí)數(shù)m值.
(1),;(2).

試題分析:本題考查直角坐標(biāo)系與極坐標(biāo)系之間的互化、參數(shù)方程與普通方程的轉(zhuǎn)化、參數(shù)的幾何意義等基礎(chǔ)知識(shí),考查學(xué)生的轉(zhuǎn)化能力和計(jì)算能力.第一問(wèn),利用極坐標(biāo)方程與直角坐標(biāo)方程之間的轉(zhuǎn)化公式進(jìn)行轉(zhuǎn)化方程,利用參數(shù)方程進(jìn)行消參將參數(shù)方程轉(zhuǎn)化為普通方程;第二問(wèn),將直線(xiàn)方程與曲線(xiàn)C的方程聯(lián)立,得到關(guān)于t的方程,利用韋達(dá)定理得到的值,再利用求出值,解出m的值.
試題解析:(I)曲線(xiàn)C的極坐標(biāo)方程是化為直角坐標(biāo)方程為:
   直線(xiàn)的直角坐標(biāo)方程為:       4分
(2):把(是參數(shù))代入方程, 得,   6分
.
      10分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在極坐標(biāo)系中,已知圓的圓心為,半徑為,點(diǎn)為圓上異于極點(diǎn)的動(dòng)點(diǎn),求弦中點(diǎn)的軌跡的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知直線(xiàn)的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為
(1)求圓的直角坐標(biāo)方程;
(2)若是直線(xiàn)與圓面的公共點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與直角坐標(biāo)系中軸的正半軸重合,且兩坐標(biāo)系有相同的長(zhǎng)度單位,圓C的參數(shù)方程為為參數(shù)),點(diǎn)Q的極坐標(biāo)為。
(1)化圓C的參數(shù)方程為極坐標(biāo)方程;
(2)直線(xiàn)過(guò)點(diǎn)Q且與圓C交于M,N兩點(diǎn),求當(dāng)弦MN的長(zhǎng)度為最小時(shí),直線(xiàn)的直角坐標(biāo)方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在直角坐標(biāo)系中,以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.曲線(xiàn)C的極坐標(biāo)方程為,M,N分別為C與x軸,y軸的交點(diǎn).
(Ⅰ)寫(xiě)出C的直角坐標(biāo)方程,并求M,N的極坐標(biāo);
(Ⅱ)設(shè)MN的中點(diǎn)為P,求直線(xiàn)OP的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在平面直角坐標(biāo)系中,直線(xiàn)是參數(shù))被圓是參數(shù))截得的弦長(zhǎng)為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸正半軸為極軸,并在兩種坐標(biāo)系中取相同的長(zhǎng)度單位.已知直線(xiàn)l的極坐標(biāo)方程為ρsin(θ-)=6,圓C的參數(shù)方程為(θ為參數(shù)),求直線(xiàn)l被圓C截得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知☉O1和☉O2的極坐標(biāo)方程分別是ρ=2cosθ和ρ=2asinθ(a是非零常數(shù)).
(1)將兩圓的極坐標(biāo)方程化為直角坐標(biāo)方程.
(2)若兩圓的圓心距為,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

直線(xiàn)與圓相交的弦長(zhǎng)為     

查看答案和解析>>

同步練習(xí)冊(cè)答案