在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),以x軸的正半軸為極軸建立極坐標(biāo)系,設(shè)曲線C的極坐標(biāo)方程為p2-6pcosθ+5=0.
(1)寫出曲線C的參數(shù)方程;
(2)設(shè)M(x,y)(y≥0)為曲線C上一點(diǎn),求x+y的取值范圍.
考點(diǎn):參數(shù)方程化成普通方程
專題:坐標(biāo)系和參數(shù)方程
分析:(1)利用ρ2=x2+y2,x=ρcosθ,即可把曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程為(x-3)2+y2=4.利用cos2α+sin2α=1,即可可得圓的參數(shù)方程.
(2)x+y=3+2cosα+2sinα=2
2
sin(α+
π
4
)
+3.利用y≥0,可得0≤α≤π,-
2
2
≤sin(α+
π
4
)≤1
,即可x+y的取值范圍.
解答: 解:(1)由曲線C的極坐標(biāo)方程為ρ2-6ρcosθ+5=0,
化為直角坐標(biāo)方程:x2+y2-6x+5=0,配方為(x-3)2+y2=4.
∴圓的參數(shù)方程為:
x=3+2cosα
y=2sinα

(2)x+y=3+2cosα+2sinα=2
2
sin(α+
π
4
)
+3.由y≥0,可得0≤α≤π,
π
4
≤α+
π
4
4

-
2
2
≤sin(α+
π
4
)≤1
,
∴x+y的取值范圍為[1,3+2
2
]
點(diǎn)評:本題考查了極坐標(biāo)方程化為直角坐標(biāo)方程、圓的方程、三角函數(shù)的圖象與性質(zhì)、兩角和差的正弦公式,考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想和化歸與轉(zhuǎn)化思想,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(
2
3
|x|-a
(1)求f(x)的單調(diào)區(qū)間;
(2)若f(x)的最大值等于
9
4
,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用反證法證明命題:“如果a>b>0,那么|a|>|b|”時(shí),假設(shè)的內(nèi)容應(yīng)是(  )
A、|a|=|b|
B、|a|<|b|
C、|a|≤|b|
D、|a|>|b|且|a|=|b|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,若輸入的n為10,那么輸出的結(jié)果是( 。
A、45B、110C、90D、55

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
a-e x
1+e x
(a∈R).
(1)若f(x)為R上的奇函數(shù),求a的值;
(2)若f(x)在R上為減函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知方程x2+y2-2(m+3)x+2(1-4m2)+16m4+9=0表示一個(gè)圓,求圓心的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα,tanβ是方程6x2-5x+1=0兩根,則3sin2(α+β)-cos2(α+β)=( 。
A、-1B、1C、2D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x-1|+|x-a|.
(I)若a=-1,解不等式f(x)≥3;
(II)如果?x∈R,f(x)≥2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了解某市心肺疾病是否與性別有關(guān),某醫(yī)院速記地對入院的50人進(jìn)行了問卷調(diào)查,得到了如下的列聯(lián)表:
  患心肺疾病 不患心肺疾病 合計(jì)
 男  5 
 女 10  
 合計(jì)   50
已知在全部50人中隨機(jī)抽取1人,抽到患心肺疾病的人的概率為
3
5

(1)請將上面的列聯(lián)表補(bǔ)充完整;
(2)能否在犯錯(cuò)誤的概率不超過0.005的前提下認(rèn)為患心肺疾病與性別有關(guān)?請說明理由;
(3)已知在患心肺疾病的10位女性中,有3位又患胃病,現(xiàn)在從換心肺疾病的10位女性中,選出3名進(jìn)行排查,記選處患胃病的女性人數(shù)為X,求X的分布列和數(shù)學(xué)期望.
參考數(shù)據(jù):
 P(K2≥k0 0.15 0.100.05  0.0250.010  0.0050.001 
 k0 2.0722.706  3.8415.024  6.6357.879  10.828
參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d.

查看答案和解析>>

同步練習(xí)冊答案