【題目】已知無(wú)窮數(shù)列的前n項(xiàng)和為,記, ,…, 中奇數(shù)的個(gè)數(shù)為

(Ⅰ)若= n,請(qǐng)寫(xiě)出數(shù)列的前5項(xiàng);

(Ⅱ)求證:"為奇數(shù), (i = 2,3,4,...)為偶數(shù)”是“數(shù)列是單調(diào)遞增數(shù)列”的充分不必要條件;

(Ⅲ)若,i=1, 2, 3,…,求數(shù)列的通項(xiàng)公式.

【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3) .

【解析】試題分析:(Ⅰ)代入的值,即可求得, , ,

(Ⅱ)根據(jù)題意,先證充分性和不必要性,分別作出證明

Ⅲ)分當(dāng)為奇數(shù)和當(dāng)為偶數(shù),兩種情況進(jìn)而推導(dǎo)數(shù)列的通項(xiàng)公式

試題解析:

(Ⅰ)解: , ,

(Ⅱ)證明:(充分性)

因?yàn)?/span>為奇數(shù), 為偶數(shù),

所以,對(duì)于任意 都為奇數(shù).

所以

所以數(shù)列是單調(diào)遞增數(shù)列

(不必要性)

當(dāng)數(shù)列中只有是奇數(shù),其余項(xiàng)都是偶數(shù)時(shí), 為偶數(shù), 均為奇數(shù),

所以數(shù)列是單調(diào)遞增數(shù)列

所以“為奇數(shù), 為偶數(shù)”不是“數(shù)列是單調(diào)遞增數(shù)列”的必要條件;

綜上所述,“為奇數(shù), 為偶數(shù)”是“數(shù)列是單調(diào)遞增數(shù)列” 的充分不必要條件.

(Ⅲ)解:(1)當(dāng)為奇數(shù)時(shí),

如果為偶數(shù),

為奇數(shù),則為奇數(shù),所以為偶數(shù),與矛盾;

為偶數(shù),則為偶數(shù),所以為奇數(shù),與矛盾.

所以當(dāng)為奇數(shù)時(shí), 不能為偶數(shù).

(2)當(dāng)為偶數(shù)時(shí),

如果為奇數(shù),

為奇數(shù),則為偶數(shù),所以為偶數(shù),與矛盾;

為偶數(shù),則為奇數(shù),所以為奇數(shù),與矛盾.

所以當(dāng)為偶數(shù)時(shí), 不能為奇數(shù).

綜上可得同奇偶.

所以為偶數(shù).

因?yàn)?/span>為偶數(shù),所以為偶數(shù).

因?yàn)?/span>為偶數(shù),且,所以

因?yàn)?/span>,且,所以

以此類(lèi)推,可得

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),關(guān)于函數(shù)的性質(zhì),有以下四個(gè)推斷:

的定義域是;

的值域是;

是奇函數(shù);

是區(qū)間(0,2)內(nèi)的增函數(shù).

其中推斷正確的個(gè)數(shù)是( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)工會(huì)利用 “健步行”開(kāi)展健步走積分獎(jiǎng)勵(lì)活動(dòng)會(huì)員每天走5千步可獲積分30分(不足5千步不積分),每多走2千步再積20分(不足2千步不積分)記年齡不超過(guò)40歲的會(huì)員為類(lèi)會(huì)員,年齡大于40歲的會(huì)員為類(lèi)會(huì)員為了解會(huì)員的健步走情況,工會(huì)從兩類(lèi)會(huì)員中各隨機(jī)抽取名會(huì)員,統(tǒng)計(jì)了某天他們健步走的步數(shù),并將樣本數(shù)據(jù)分為, , , , , , 九組,將抽取的類(lèi)會(huì)員的樣本數(shù)據(jù)繪制成頻率分布直方圖, 類(lèi)會(huì)員的樣本數(shù)據(jù)繪制成頻率分布表圖、表如下所示).

的值;

從該地區(qū)類(lèi)會(huì)員中隨機(jī)抽取名,設(shè)這名會(huì)員中健步走的步數(shù)在千步以上(含千步)的人數(shù)為,求的分布列和數(shù)學(xué)期望;

設(shè)該地區(qū)類(lèi)會(huì)員和類(lèi)會(huì)員的平均積分分別為,試比較的大。ㄖ恍鑼(xiě)出結(jié)論).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

)當(dāng)時(shí),求曲線處的切線方程;

)若函數(shù)在定義域內(nèi)不單調(diào),求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年空氣質(zhì)量逐步霧霾天氣現(xiàn)象增多,大氣污染危害加重,大氣污染可引起心悸,呼吸困難等心肺疾病,為了解某市心肺疾病是否與性別有關(guān),在某醫(yī)院隨機(jī)的對(duì)入院50人進(jìn)行了問(wèn)卷調(diào)查得到了如下的列聯(lián)表:

患心肺疾病

不患心肺疾病

合計(jì)

5

10

合計(jì)

50

已知按性別采用分層抽樣法抽取容量為10的樣本,則抽到男士的人數(shù)為5

(Ⅰ)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;

(Ⅱ)能否在犯錯(cuò)概率不超過(guò)的前提下認(rèn)為患心肺疾病與性別有關(guān)?說(shuō)明你的理由.

下面的臨界值表供參考:

參考公式:

,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于項(xiàng)數(shù)為)的有窮正整數(shù)數(shù)列,記),即中的最大值,稱數(shù)列為數(shù)列的“創(chuàng)新數(shù)列”.比如的“創(chuàng)新數(shù)列”為.

1)若數(shù)列的“創(chuàng)新數(shù)列”為1,2,3,4,4,寫(xiě)出所有可能的數(shù)列

2)設(shè)數(shù)列為數(shù)列的“創(chuàng)新數(shù)列”,滿足),求證: );

3)設(shè)數(shù)列為數(shù)列的“創(chuàng)新數(shù)列”,數(shù)列中的項(xiàng)互不相等且所有項(xiàng)的和等于所有項(xiàng)的積,求出所有的數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】節(jié)約資源和保護(hù)環(huán)境是中國(guó)的基本國(guó)策.某化工企業(yè),積極響應(yīng)國(guó)家要求,探索改良工藝,使排放的廢氣中含有的污染物數(shù)量逐漸減少.已知改良工藝前所排放的廢氣中含有的污染物數(shù)量為,首次改良后所排放的廢氣中含有的污染物數(shù)量為.設(shè)改良工藝前所排放的廢氣中含有的污染物數(shù)量為,首次改良工藝后所排放的廢氣中含有的污染物數(shù)量為,則第n次改良后所排放的廢氣中的污染物數(shù)量,可由函數(shù)模型給出,其中n是指改良工藝的次數(shù).

1)試求改良后所排放的廢氣中含有的污染物數(shù)量的函數(shù)模型;

2)依據(jù)國(guó)家環(huán)保要求,企業(yè)所排放的廢氣中含有的污染物數(shù)量不能超過(guò),試問(wèn)至少進(jìn)行多少次改良工藝后才能使得該企業(yè)所排放的廢氣中含有的污染物數(shù)量達(dá)標(biāo).

(參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】企業(yè)需為員工繳納社會(huì)保險(xiǎn),繳費(fèi)標(biāo)準(zhǔn)是根據(jù)職工本人上一年度月平均工資(單位:元)的繳納,

年份

2014

2015

2016

2017

2018

t

1

2

3

4

5

y

270

330

390

460

550

某企業(yè)員工甲在2014年至2018年各年中每月所撒納的養(yǎng)老保險(xiǎn)數(shù)額y(單位:元)與年份序號(hào)t的統(tǒng)計(jì)如下表:

1)求出t關(guān)于t的線性回歸方程;

2)試預(yù)測(cè)2019年該員工的月平均工資為多少元?

附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:

(注:,,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某人做試驗(yàn),從一個(gè)裝有標(biāo)號(hào)為1,2,3,4的小球的盒子中,無(wú)放回地取兩個(gè)小球,每次取一個(gè),先取的小球的標(biāo)號(hào)為,后取的小球的標(biāo)號(hào)為,這樣構(gòu)成有序?qū)崝?shù)對(duì)

1)寫(xiě)出這個(gè)試驗(yàn)的所有結(jié)果;

2)求“第一次取出的小球上的標(biāo)號(hào)為”的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案