【題目】已知兩個集合A,B,滿足BA.若對任意的x∈A,存在ai,aj∈B(i≠j),
使得x=λ1ai+λ2aj(λ1,λ2∈{﹣1,0,1}),則稱B為A的一個基集.若A={1,2,3,4,5,6,7,8,9,10},則其基集B元素個數(shù)的最小值是__
【答案】4
【解析】
設(shè)B中元素a1<a2<…<an,且ai≤aj,
則1·ai+0·aj有n種,1·ai+1·aj有n種,1·ai-1·aj有種,-1·ai+1·aj有種,
∴n+n++≥10,∴n2+n≥10,∴n≥3, n=3時,共12種,最多不符合題意兩種,
設(shè)B={a1,a2,a3},a1<a2<a3,則2a3≥10,2a2≤10,
∴a3≥5,a2≤5. a3=5時,a3+a2=9,
∴a2=4,a3+a1=7或a2+a1=7,∴a1=2或3,∴B={5,4,3}(舍),B={5,4,2}(舍);
a3=6時,若a2=5,則a3+a1=7或a2+a1=7,
∴a1=1或2,B={6,5,2}(舍),B={6,5,1}(舍),
若a2=4,則a1+a3=9,∴B={6,4,3}(舍);
a3=7時,a1+a3≤10,a1≤3,a1=3時,3<a2≤5無法構(gòu)成9,a1=2時,a2+a3=10或2a2=10,
∴a2=3或5,B={7,5,2}(舍),B={7,3,2}(舍).
a1=1時,a2+a3=10或2a2=10,a2=3或5,B={7,5,1}(舍),B={7,3,1}(舍);
a3=8時,a1+a8≤10,∴a1=1或2,a1=1時,a2+a3=10或2a2=10,
∴a2=2或5,B={8,5,1}(舍),B={8,2,1}(舍),
a1=2時,2<a1<5,無法構(gòu)成9;a3=9時,a1=1,1<a2≤5,無法構(gòu)成7;
a3=10時,2a3>10,a3+a2>10,a3+a1>10,不是10個數(shù).
∴n=3時不成立.n=4時,B={9,6,4,1}或B={9,7,4,1}或B={8,5,2,1},合理即可.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:過點,左焦點
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過點F作于x軸不重合的直線l,l與橢圓交于A,B兩點,點A在直線上的投影N與點B的連線交x軸于D點,D點的橫坐標(biāo)是否為定值?若是,請求出定值;若不是,請說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AD∥BC,ADC=PAB=90°,BC=CD=AD.E為棱AD的中點,異面直線PA與CD所成的角為90°.
(I)在平面PAB內(nèi)找一點M,使得直線CM∥平面PBE,并說明理由;
(II)若二面角P-CD-A的大小為45°,求直線PA與平面PCE所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】本市攝影協(xié)會準(zhǔn)備在2019年10月舉辦主題為“慶祖國70華誕——我們都是追夢人”攝影圖片展.通過平常人的鏡頭記錄國強民富的幸福生活,向祖國母親的生日獻禮.攝影協(xié)會收到了來自社會各界的大量作品,打算從眾多照片中選取100張照片展出,其參賽者年齡集中在之間,根據(jù)統(tǒng)計結(jié)果,做出頻率分布直方圖如圖:
(1)根據(jù)頻率分布直方圖,求這100位攝影者年齡的樣本平均數(shù)和中位數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點值作代表);
(2)為了展示不同年齡作者眼中的祖國形象,攝影協(xié)會按照分層抽樣的方法,計劃從這100件照片中評出20個最佳作品,并邀請作者參加“講述照片背后的故事”座談會.
①在答題卡上的統(tǒng)計表中填出每組應(yīng)抽取的人數(shù);
年齡 | ||||||
人數(shù) |
②若從較年輕的前三組作者中選出2人把這些圖片和故事整理成冊,求這2人至少有一人的年齡在的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司新上一條生產(chǎn)線,為保證新的生產(chǎn)線正常工作,需對該生產(chǎn)線進行檢測,現(xiàn)從該生產(chǎn)線上隨機抽取100件產(chǎn)品,測量產(chǎn)品數(shù)據(jù),用統(tǒng)計方法得到樣本的平均數(shù),標(biāo)準(zhǔn)差,繪制如圖所示的頻率分布直方圖,以頻率值作為概率估值。
(1)從該生產(chǎn)線加工的產(chǎn)品中任意抽取一件,記其數(shù)據(jù)為,依據(jù)以下不等式評判(表示對應(yīng)事件的概率)
①
②
③
評判規(guī)則為:若至少滿足以上兩個不等式,則生產(chǎn)狀況為優(yōu),無需檢修;否則需檢修生產(chǎn)線,試判斷該生產(chǎn)線是否需要檢修;
(2)將數(shù)據(jù)不在內(nèi)的產(chǎn)品視為次品,從該生產(chǎn)線加工的產(chǎn)品中任意抽取2件,次品數(shù)記為,求的分布列與數(shù)學(xué)期望。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國古代數(shù)學(xué)經(jīng)典《九章算術(shù)》系統(tǒng)地總結(jié)了戰(zhàn)國、秦、漢時期的數(shù)學(xué)成就,書中將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的三棱錐稱之為鱉臑,如圖為一個陽馬與一個鱉臑的組合體,已知平面,四邊形為正方形,,,若鱉臑的外接球的體積為,則陽馬的外接球的表面積等于______。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,其中是自然對數(shù)的底數(shù).
(Ⅰ),使得不等式成立,試求實數(shù)的取值范圍;
(Ⅱ)若,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線: 經(jīng)過伸縮變換后得到曲線.以坐標(biāo)原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(Ⅰ)求出曲線、的參數(shù)方程;
(Ⅱ)若、分別是曲線、上的動點,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于曲線:的下列說法:①關(guān)于原點對稱;②關(guān)于直線對稱;③是封閉圖形,面積大于;④不是封閉圖形,與圓無公共點;⑤與曲線D:的四個交點恰為正方形的四個頂點,其中正確的個數(shù)是( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com